

Máster Interuniversitario en Astrofísica Universidad Complutense de Madrid Universidad Autónoma de Madrid

CARMENES target characterisation: activity and rotation periods of M dwarfs

Trabajo de fin de máster e iniciación a la investigación (24 créditos)

Alumno: Diego HIDALGO SOTO¹

Supervisores: David Montes Gutiérrez² (UCM), Jose A. CABALLERO HERNÁNDEZ³ (CAB) Tutor: David Montes Gutiérrez (UCM)

Julio 2014

 $^{1}{\tt diegohid@ucm.es}$

²dmontes@ucm.es

 $^{^3}$ caballero@cab.inta-csic.es

Resumen:

Contexto: Este TFM se enmarca dentro de la preparación científica del proyecto CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical Échelle Spectrographs) con el fin de seleccionar las 300 mejores estrellas de tipo espectral M para la búsqueda exotierras por el método de velocidad radial.

Objetivos: El estudiante recopilará principalmente periodos de rotación fotométricos de la literatura y en el reciente estudio fotométrico "MEarth" para aquellas estrellas M observables desde Calar Alto. Este estudio permitirá comparar con las velocidades de rotación espectroscópicas $(v \sin i)$ y estudiar con detalle la relación actividad-rotación en este rango de tipos espectrales.

 $M\acute{e}todo$: El estudiante buscará información en la base de datos de "VizieR" y, principalmente, en artículos individuales.

Resultados: Se ha aumentado considerablemente la base de datos en CARMENCITA, principalmente en los periodos en más de un 400 %. Aportación de 405 datos para valores de $pEW(H\alpha)$ y un 20 % más de valores de $v \sin i$. La relación periodo-actividad que se encuentra este trabajo, es la mayor realizada hasta la fecha en estrellas M. Se han calculado ángulos de inclinación, llegadon a seleccionar posibles estrellas M para que sean estudiadas mediante tránsitos. Se han podido seleccionar tres estrellas (DT Vir AB, BD-21 1074 A y FF And) para su estudio posterior mediante tránsitos.

Conclusiones: Este trabajo ha permitido recopilar información muy valiosa para el estudio de estrellas de tipo espectral M, identificar estrellas en grupos de movimiento y obtener relaciones entre emisión $H\alpha$, tipo espectral y periodo.

Palabras clave: Bases de datos astronómicas — Estrellas: actividad — Estrellas: tipos tardíos — Estrellas: baja masa — Estrellas: enanas M — Estrellas: rotación.

Abstract:

Context: This TFM is part of the scientific project preparation of CARMENES (Calar Alto high-Resolution search for M dwarfs with Exoearths with Near-infrared and optical spectrographs Échelle) in order to select the top 300 stars of spectral type M for exoearths search by radial velocity method. Aims: The student will collect particularly photometric rotation periods from literature and the recent photometric study "MEarth" for those M stars observables from Calar Alto. This study will compare with spectroscopic rotational velocities $(v \sin i)$ and study in detail the activity-rotation relationship in this range of spectral types.

Method: The student search information in "VizieR" data base and, mainly, on individual papers.

Results: The data base of CARMENCITA has been increased considerably, about all in periods with a increase of 400 %. Contribuying with 405 values of $pEW(H\alpha)$ and a 20 % new values of $v \sin i$. The relationship between period-activity on this project is the biggest for M stars as far as it is known. Somo inclinations degrees have been calculated, to select possible M stars that could be studied by transits. Three stars have been identified (DT Vir AB, BD-21 1074 A y FF And) to be studied by transits in a future.

Conclusions: This project has let collecting valuable information to study M spectral type stars, identifying some stars on moving groups and obtaining the relationship between $H\alpha$ line emission, spectral type and period.

Keywords: Astronomical data bases — Stars: activity — Stars: late-type — Stars: low-mass — Stars: M dwarfs — Stars: rotation.

Índice general

1.	Intr	oducción	6
	1.1.	CARMENES	6
	1.2.	Estrellas M	8
		1.2.1. Estrellas M con exoplanetas	9
	1.3.	Catálogo de entrada	9
	1.4.	Objetivo	9
2.	Aná	ilisis	11
	2.1.	Periodo de rotación	11
	2.2.	Velocidad rotacional	12
	2.3.	Emisión H α	13
	2.4.	Índice de actividad \mathbf{R}'_{HK}	15
3.	Res	ultados y discusión	16
	3.1.	Índices de actividad	16
		3.1.1. Índice de actividad H α	16
		3.1.2. Índice de actividad \mathbf{R}'_{HK}	19
	3.2.	Grupos de movimiento	20
	3.3.	Velocidad rotacional y parámetros estelares	22
		3.3.1. Velocidad ecuatorial	24
4.	Con	clusiones	27
Bi	bliog	çrafía	28
A.	Tab	la de Datos	30

Capítulo 1

Introducción

Muy lejos queda ya el descubrimiento del primer exoplaneta alrededor de una estrella tipo Sol (Mayor & Queloz 1995). A 7 de Junio de 2014 se conocen¹ 1795 exoplanetas en 1114 sistemas planetarios y con el avance en el desarrollo, tanto de nuevos instrumentos de medida como de nuevos telescopios, se mejorará en los métodos de observación, lo que dará lugar a que este número aumentará considerablemente en los próximos años.

Existen diferentes métodos de detección, pero solo unos pocos son los más utilizados. Uno de ellos es la *método de la velocidad radial* mediante la espectroscopía de alta resolución. En este campo existen varios instrumentos dedicados en el rango de longitudes de onda del óptico, con especial atención a HARPS (High Accuracy Radial velocity Planet Searcher), dos instrumentos situados en los observatorios de la ESO (European Southern Observatory) en Chile y TNG (Telescopio Nazionale Galileo) en La Palma. CARMENES se convertirá en el primer (y único) detector de velocidad radial que opere en el rango de longitudes de onda del óptico e infrarrojo cercano. Las otras formas más importantes de detección de exoplanetas, es mediante las técnincas de detección visual directa y tránsitos planetarios. La técnica de detección menos utilizada es la de *microlente gravitatoria*.

1.1. CARMENES

CARMENES² es, por un lado el acrónimo del instrumento "Calar Alto high-Resolution search for M dwarfs with Exo-earths with Near-infrared and optical Echelle Spectrographs", un espectrógrafo de última generación que se está construyendo para el telescopio 3.5 metros en el Observatorio de Calar Alto (CAHA) en Almería (Spain). CARMENES consiste en dos espectrógrafos Echelle que cubren un rango de longitud de onda entre los 0.55 y 1.7 μ m con una resolución espectral de R = 82000, alimentado por fibras del foco Cassegrain del telescopio. Los espectrógrafos están inmersos en tanques de vacío que proporcionan la estabilidad y temperatura necesarias para llegar a medir una velocidad radial de 1 m/s, empleando simultáneamente una calibración con lámparas de líneas de emisión e interferómetros Fabry-Pérot.

¹http://exoplanet.eu/catalog/

²http://carmenes.caha.es/

Figura 1.1: El área sombreada representa la zona habitable como una función de la masa de la estrella (normalizada a la masa solar) y la distancia orbital (en unidades astronómicas au). La línea discontinua representa el efecto, por debajo de la cual la rotación entre el planeta y la estrella está sincronizada. Las líneas continuas representa el límite de detección (la zona situada a la izquierda de la línea) de exotierras (entre 5 y 10 M_{\oplus}).

Por otro lado, CARMENES es el nombre que se le da al proyecto científico como consecuencia de la llamada de CAHA para la construcción de un nuevo instrumento en el Observatorio de Calar Alto y del que posteriormente surge el instrumento CARMENES. Por último, CARMENES es también, el nombre que recibe el consorcio de once instituciones Hispano-Alemanes, entre las que se encuentra la Universidad Complutense de Madrid.

El objetivo científico fundamental del proyecto CARMENES es llevar a cabo un estudio de aproximadamente 300 estrellas de tipo espectral tardío en la secuencia principal que den como resultado la detección de planetas de baja masa (o también llamados de tipo Tierra) que se sitúen en la zona habitable. CARMENES se centrará en la medida de la velocidad radial de estas estrellas tardías, con una gran precisión y así poder detectar exotierras en la zona habitable de la estrella, ya que la variación de su velocidad radial sería comparable a la que produce un planeta como Júpiter en una estrella tipo Sol. Tal y como se ha estimado en CARMENES (Quirrenbach et al. 2012), para estrellas de tipo espectral M4-M5 se espera la detección de exotierras de alrededor de 5 masas terrestres dentro de la zona habitable. Hay una amplica posibilidad detección de exotierras en las zonas habitables alrededor de los diferentes tipos de estrellas, tal y como se muestra en la Fig. 1.1.

El proyecto se encuentra en su fase final de ensamblado y calibración en las instalaciones de CAHA y se espera que el instrumento vea su primera luz en verano de 2015.

Figura 1.2: Diagrama de Hertzsprung-Russell, obtenida de la revista Astronomy Magazine (http://www.astronomy.com/).

1.2. Estrellas M

El diagrama de Hertzsprung-Russell 1.2 representa la luminosidad de una estrella en función de su temperatura efectiva. Según este diagrama las estrellas se clasifican según su temperatura efectiva (O, B, A, F, G, K, M, L y T), que a su vez se etiqueta como estrellas tempranas, a aquellas más calientes y estrellas tardías a aquellas cuya temperatura efectiva es baja. Dentro del rango de la estrellas frías (F, G, K y M), CARMENES se centrará en el estudio de las estrellas de tipo M, cuya temperatura efectiva varía desde los 3200 K hasta los 2100 K, aproximadamente. Dentro de la categoría de estrella M, las llamadas M0 son las más calientes y las M9 son las más frías.

Como discutiremos en las siguientes secciones, este tipo de estrellas frías tienen tamaños típicos muy por debajo del tamaño del Sol. Sin embargo, son una estrellas muy activas con respecto a sus hermanas mayores, tal y como lo muestran tanto la emisión de la línea de Balmer H α , como su emisión en rayos X, ambos asociados a la actividad cromosférica de la estrella.

Una de las características más importantes de las estrellas M que las hacen ser tan interesantes, es que son las más abundantes de nuestra galaxia (entre el 70 y el 75 % del total de estrellas), lo que conlleva una gran estadística asociada que nos ayudará a comprender mejor la formación y evolución de planetas y su relación con la estrella que lo aloja (tanto si se encuentra planeta como si no). Este tipo de estrellas de poca masa tienen su máximo de emisión en un rango de longitud de onda de 1 μ m (infrarrojo cercano; véase Holgado 2014), y esta es la razón de que el rango espectral de CARMENES se haya optimizado para un rango de longitud de onda de entre 0.55 μ m y 1.7 μ m.

1.2.1. Estrellas M con exoplanetas

Las estrellas M han sido estudiadas por la facilidad técnica que existe a la hora de detectar exoplanetas tipo Tierra, dado que éstos producen efectos similares a los que harían exoplanetas gigantes en estrellas de masa mayor. En la Tabla A.1 encontramos todas las estrellas M que albergan al menos un exoplaneta. Destacar que según la base de datos exoplanet.eu, apenas el 4% del total de exoplanetas encontrados pertenecen a estrellas de tipo M.

Hasta la fecha, se han descubierto 75 planetas en estrellas de tipo espectral M en 53 estrellas diferentes. 49 de estos planetas han sido descubiertos medianete el método de velocidad radial, mientras que tan solo 5 han sido descubiertos por tránsitos. Sin embargo, hay que tener en cuenta que en muchísimos de los casos, el tipo espectral de la estrella no ha sido identificado y, por tanto, este número podría ser muchísimo mayor. En cuanto a la variedad de exoplanetas encontrados en este tipo de estrellas, nos encontramos masas desde apenas 0.006 $M_{\rm Jup}$, que equivale a unas 2 M_{\oplus} , hasta una treintena de $M_{\rm Jup}$. El primer exoplaneta descubierto en una estrella del tipo espectral M, fue Gliese 876 b en el año 1999, mediante la técnica de medida de velocidad radial (Delfosse et al. 1999).

1.3. Catálogo de entrada

Existen innumerables estrellas de tipo M en nuestra galaxia, lo que conlleva otro tanto en tiempo de observación del que no se dispone. Por este motivo se pretende llevar a cabo una selección minuciosa de las mejores 300 estrellas de tipo M que pueden ser observadas con CARMENES. Para lograr este objetivo se crea la base de datos de CARMENES, CARMENCITA (CARMENes Cool star Information and daTa Archive), la más completa hasta la fecha de este tipo de estrellas, con más de 2000 estrellas.

El catálogo cuenta con decenas de datos de cada estrella, que va desde el tipo espectral, fotometría desde el ultravioleta hasta el infrarrojo medio, movimiento propio, $v \sin i$, etc. Actualmente es un catálogo privado que se hará público como legado del proyecto CARMENES.

1.4. Objetivo

Uno de los trabajos más arduos de todo investigador a la hora de realizar un proyecto es la tarea de recopilar toda la información disponible en la literatura, antes del inicio del proyecto, para no repetir medidas innecesarias. Este estudio previo es determinante para ahorrar en tiempo de observación, el "tesoro de los astrofísicos", ya que no es fácil de obtener. Hay que tener en cuenta que la tendencia actual de observación consiste en construir menos telescopios, pero cada vez más grandes y caros, lo que conlleva una penalización en el tiempo de observación.

Este trabajo de fin de máster está enfocado hacia la máxima recopilación de información de las estrellas M del catálogo de CARMENES. Se pone especial atención a la recopilación de los periodos del proyecto MEarth³. El estudio de MEarth se centra en la búsqueda de exoplanetas rocosos tipo Tierra que se encuentren en las estrellas más cercanas y pequeñas, alrededor de nuestro sistema solar. La muestra se compone principalmente por estrellas de tipo M que se encuentren como mucho a 25 parsec de distancia, lo que hace que sea una fuente importante de datos para nuestro catálogo por la coincidencia del tipo de objeto a estudio. Por otro lado, el estudio de todas las velocidad de rotación junto a sus respectivas actividades para las estrellas M, proporcionan mucha información que hasta ahora no se había recogido en un único documento, siendo muy relevante la edad de la estrella.

³http://www.cfa.harvard.edu/MEarth/Welcome.html

Capítulo 2

Análisis

Obtener los datos es una tarea tan importante como costosa. Para la mayor parte de los datos que se han utilizado para la realización de este trabajo, han sido obtenidos de artículos científicos de diversa índole. En la mayoría de los casos ha hecho falta un trabajo minucioso de búsqueda individual en cada uno de los artículos a los que se hace referencia en este trabajo.

Por otro lado, el tratamiento de errores es una parte importante en cualquier estudio que se precie. Pero hemos encontrado un problema igual de importante. Prácticamente el grueso de los datos obtenidos carece de errores de medida, salvo en contados estudios en los que el volumen de datos es mínimo. Cabe destacar que todos los datos medidos por miembros del proyecto CARMENES han sido añadidos con sus correspondientes errores.

2.1. Periodo de rotación

Para la recopilación de datos en periodos se tuvo en cuenta tres principales fuentes de información. En primer, y base para las búsquedas de información, se hizo una tabla de CARMENCITA con las coordenadas de cada una de las estrellas para introducirlas en la base de datos del "Centre de Données astronomiques de Strasbourg¹" (CDS), que tiene por nombre VizieR.

Después de buscar en la base de datos de MEarth (Irwin et al. 2010) teníamos que partir de algún artículo que hubiese construido algún catálogo de estrellas M. El primero, entre todos los disponibles incialmente, fue el estudio de Norton et al. (2007). Con un punto de partida, se procede a buscar coincidencias con el catálogo de CARMENES tal y como se muestra en la Fig. ??. Con este procedimiento se ha buscado también en los catálogos de Plavec (1960), Bidelman (1988), Koen et al. (2002), Hartman et al. (2004), Montagnier et al. (2006), Kiraga & Stepień (2007), Devor et al. (2008), Bergfors et al. (2010), Korhonen et al. (2010), Messina et al. (2010), Hartman et al. (2010), Schlieder et al. (2010), Hartman et al. (2011), Pojmański (2002), Zachory et al. (2011), Giacobbe et al. (2012), Hunt-Walker et al. (2012), Kiraga (2012), Kiraga & Stepień (2013) y McQuillan et al. (2013).

¹http://cds.u-strasbg.fr/

					10-1	ioB Search Bage
					VIZI	lek search Page
Simple Ts	arget List	Of Targets				Fast Xmatch with large catalogs or
Target Name	e (resolved by	Sesame) or Position:	Target dimension	2		
Back Clear		J2000	v 2 arcmin	¥		
			● Radius ○ Boz	x size		
bhA						
^	200 100		SuperWASP/ROS	SAT periodic variab	ole stars (Norton+, 20	Similar Catalogs 2007A&A.46775551 ReadMe+ftp
	J/A+A/4	0///85	2.2.1.000000000			
1.J/A+A/	467/785/tal	<u>olel</u>	(c)Previously classi	ified variable stars	(68 rows)	
2. <u>J/A+A/</u>	467/785/tal	ole2	(c)Newly identified	i variable stars (360	0 rows)	
0	Xmatch is	off				
Y Simple Co	onstraint	List Of Constraints				Submit Res
Query by	Constraint	applied on Column	12 (Oursel Order) + (<u>.</u>		
			o lo aquat o ruer.	J -)		
Dist of c	constraints app	blied to column none (select it	using the colored boxes))		
 List of c Uarbase 	constraints app	blied to column: none (<i>select it</i>	using the colored boxes	;)		
List of c Verboar Examina	constraints app e output C er No se	vied to column none (select is) single table add your is ha seleccionado ningún	using the colored baxes and mut as first column archivo. (table-separated-)) value format accepted)		
List of c Verboar Examina	e output C arNo se	vilied to column: none (select it) single table add your it ha seleccionado ningún Join tables	using the colored baxes and uput as first column archivo. (table-separated-)) value format accepted)		
List of c List of c List of c Listose Examina Show	e output C arNo se	viled to column none (select it) single table add your it ha seleccionado ningún Join tables more join	using the colored baxes uput as first column archivo. (table-separated- Column	> -) value_format accepted) Clear	Constraint	Explain (DCD)
List of c Verboss Examina Show	constraints apg e output C ar No se Cair	Viled to column: none (select it) single table add your it ha seleccionado ningún Join tables more join (ALL) rec	using the colored boxes put as first column archivo, (table-separated- Column mo	:) nalue format accepted) Clear	Constraint	Explain (XX3) Record number within the original table (starting from 1) (<u>nuttaneori</u>)
List of c Verboss Examina Skow	constraints apg e output O r No se Cair	biled to column: none (select it') single table add your it ha seleccionado ningún Join tables more idia (ALL) rec (ALL) n	in Column archivo. (table-separated Column mo 1SWASP) -) value format accepted) Clear	Constraint	Explain: (003) Record number within the original table (starting from 1) (<u>meta accord</u>) ⁽⁰⁾ Number of deplicate SuperWASP objects ((TN-1) (<u>meta accord</u>)
List of c Varboss Examina Show	e output C ar No se	hied to column: none (select if) single table add your if ha seleccionado ningún Join tables more ióin (ALL) n (ALL) n (ALL) n	wang the colored boxes in quat as forse colored boxes in quat as forse colored boxes in quat as forse colored boxes in columen Columen mo ISWASP WASP	> -) value format accepted) Clear	Constraint (char)	Explain (CCD) Record number within the original table (starting from 1) (<u>mata meccord</u>) ^(a) Number of duplicate SuperWASP objects ((FN-1) (<u>mata mecho</u>) SuperWASP designation, FHTLONES surDDAMSS S. (<u>mata dimeta main</u>)
List of c Varboss Examina Show	e eutput C ar No se Cair O Coir O	We to column none (select if) single table add your in the seleccionado ningún Join tables mare isin (ALL) nc (ALL) nc (ALL) 15 (ALL) RC	waing the colored backs in quart as first colored backs in quart as first colored backs in Column The ISWASP WASP DSAT	> -) >> value format accepted) Clear ((char)	Explain (ICO) Record number within the original table (starting from 1) (<u>instancess</u>) ^(a) Number of duplicate SuperWASP objects (<u>from 10 Not 10 N</u>
List of c Verbose Examina Skow	e output C r No see Carrier Construction of the second secon	We to column none (select if) single table add your in the seleccionado ningún <i>Join tables</i> (ALL) re- (ALL) n_ (ALL) RC (ALL) RC	archivo. (table -separatedo Column archivo. (table -separatedo Column 18WASP WASP	((char)	Explain (KCB) Record number within the original table (starting from 1) (<u>insta seconf</u>) ^(a) Number of duplicate SuperWASP objects ((fN>1) (<u>insta seconf</u>) ^(a) SuperWASP designation, (<u>fRHDARS secODDARSS s (insta id meta main</u>) ROBAT designation (<u>insta id creas</u>) SuperWASP period (<u>insta seconf</u>)
List of c Varboss Examina Show V	e eutput C r_ No see Cair O O O O O O O O O O O O O	A state to column: mone (select if) single table and your in the seleccionador imgdin <i>Join cables</i> (ALL) rec (ALL) rec (ALL) RC (ALL) RC (ALL) RC (ALL) VR	archivo. (table-separatel- Column archivo. (table-separatel- column) archivo. (table-separatel- Column archivo. (table	((dar) (dar) d mag	Explain (KD) Record number within the original table (starting from 1) (<u>mita succid</u>) ^(a) Number of duplicate SuperWASP objects ((FN-1) (<u>mita succid</u>) SuperWASP designation, [<u>mita succid</u>] SuperWASP designation (<u>mita succid</u>) SuperWASP programatic (<u>mita succid</u>) SuperWASP Vanginate (<u>succide maxem out.</u>)
 ¿ List efc ♥ Varbess Examina Show ♥ <	e eutput C r. No see B C C C C C C C C C C C C C	Set to column mome (select if) angle stable	rouge of the other loss of the other sectors of the	((char) d mag	Explain (KD) Record number within the original table (starting from 1) (<u>insta records</u>) ⁽⁶⁾ Number of duplicate SuperWASP objects (dTN>1) (<u>insta metods</u>) SuperWASP designation, HEIMAMS st-DDAMSS s (<u>insta idmeta main</u>) ROSAT designation (<u>insta id origi</u>) SuperWASP princid (<u>imp and remoon</u>) SuperWASP variantitude (<u>into marcem out U</u>) USNO-B1 blue magnitude (<u>into marcem out U</u>)
A start of comparison of the start of comparison of the start of	constraints app e output C r No see Gif O O O O O O O O O O O O O	Let to column some (sheft if it) add your in > ungis with a seleccionado ringuin fain addres	ronga onani Correlation of the second on the	((dar) (dar) d maz maz maz	Explain (KCD) Record number within the original table (starting from 1) (nutra.nccd) (a) Number of duplicate SuperWASP objects (rN>1) (nutra.nccd) (b) SuperWASP designation, (NUTRA is an explosed of the information main) ROSAT designation (nutra is information) SuperWASP period (time series) SuperWASP negative (tool mane encord.D) USNO-8.11 bite magnitude (tool mane encord.D) USNO-8.11 bite magnitude (tool mane encord.D)
A set of c C set oscillatorial c	onstraints app e output C rr No see C C C C C C C C C C C C C C C C C C	Set to solumn some (heter if it was a solution of the set of the solution of the set	ronga offer observed beer Ger gut at forze observe Column mo ISWASP JSAT r mag mag lame	(Clear	(dar) (dar) (dar) (dar) (dar) (dar)	Explain (CC) Record number within the original table (starting from 1) (<u>meta accord</u>) ^(a) Number of deplicates SuperWASP objects ((TN-1) (<u>meta accord</u>) SuperWASP designation (<u>meta idea accord</u>) SuperWASP resignation (<u>meta idea accord</u>) SuperWASP reside (<u>meta meta ord</u>) SuperWASP vi magnitude (<u>clost marcen ord</u>) USNO-B1 blue magnitude (<u>clost marcen ord</u>) USNO-B1 with magnitude (<u>clost marcen ord</u>)
Constant of the second se	onstraints app e output C e in the second se	Sei to solum suse (alerti usge tub alerti da topor Join askar alerti Sein askar (All) res (All) Res (All	ronga officient	(Clear	(char) (char) d mas mas (char) (char)	Explain (KC) Record number within the original table (starting from 1) (mfra ancto) (a) Number of duplicate SuperWASP objects ((FN-1) (mfra ancto) SuperWASP designation (mfra india origin) SuperWASP variable (india marcen origin) SuperWASP variables (india marcen origin) USNO-R1 tel magnitude (india marcen origin) USNO-R1 tel magnitude (india marcen origin) USNO-R1 tel magnitude (india marcen origin) Variable star marc (india ji) Variable star proge (india accuruze)

Figura 2.1: Captura de pantalla de la base de datos de VizieR, donde están señalados en rojo, el artículo al cuál hace referencia y el dato de salida que queremos obtener.

Con el procedimiento de VizieR, se encontraron la mayoría de datos, pero faltan muchos otros. La segunda manera de conseguir datos de la literatura fue a través de la página web de la American Association of Variable Star Observers² (AAVSO). En esta página se fueron introduciendo una a una todas las estrellas de CARMENCITA hasta tener la lista de periodos en su estado final.

El último de las formas para obtener la tabla final de periodos, es a través de artículos publicados, facilitados por los tutores y obtenidos a partir de la AAVSO (Fig. 2.2).

Con este procedimiento, se ha recopilado la cantidad de 217 medida de periodos, lo que supone un poco más del 10% de todas las estrellas del catálogo. Esta recopilación supone un avance significativo en el número de datos, ya que solo se contaba con 45 medidas previas.

2.2. Velocidad rotacional

Uno de los parámetros más importantes de las estrellas M, es su velocidad ecuatorial. Dado que las estrellas tienen una rotación diferencial, se define la velocidad de rotación de una estrella, como la velocidad de rotación en el ecuador de la estrella. Por este motivo puede ser citada en muchos textos como velocidad ecuatorial o velocidad rotacional.

En la Fig. 2.3 se esquematiza la situación de la inclinación de la estrella con respecto a la línea de visión desde la Tierra³. Como puede apreciarse, la medida que se toma de la velocidad rotacional, es la proyección sobre la línea de visión, es decir, cuando hablamos de velocidad de rotación de una estrella, en realidad nos estamos refiriendo a la proyección sobre la línea de visión $(v_r \sin i)$, y no a la velocidad ecuatorial que

²http://www.aavso.org/vsx/index.php?view=about.top

³http://en.wikipedia.org/wiki/Stellar_rotation

Figura 2.2: A la izquierda la tabla de datos de Irwin et al. (2010), donde se dan los periodos y otros parámetros estelares. A la derecha tenemos una captura de pantalla de la búsqueda de una estrella en AAVSO y el resultado del periodo (líneas más abajo se da el artículo del cual ha sido sacado el dato).

hemos mencionado al principio. Por lo tanto, cuando la inclinación de una estrella es aproximadamente 90°, entonces la velocidad de rotación medida coincide con la ecuatorial.

Para obtener los valores de la literatura de la proyección de la velocidad ecuatorial $(v \sin i)$, se ha seguido el mismo procedimiento que para los periodos. La base de datos del CDS ha sido la principal fuente de datos para este trabajo, con sus respectivos artículos (Stauffer et al. 1986; Reid et al. 2004; Głebocki et al. 2005; Torres et al. 2006; Reiners 2007; White et al. 2007; Browning et al. 2010; Houdebine 2010; Schlieder et al. 2012; Deshpande et al. 2012; Herrero et al. 2012; Reiners et al. 2012; Shkolnik et al. 2012; Schlieder et al. 2012 y Antonova et al. 2013). En este tipo de estrellas, los valores típicos de la velocidad rotacional están entre unas centésimas de metros por segundo, hasta varias decenas. Sin embargo, la velocidad de rotación media se mantiene muy por debajo de los 10 m s⁻¹. Destacar que de las casi 2100 estrellas del catálogo, se cuenta con un total de 420 medidas de esta propiedad, lo que supone algo más de un 20 % de medidas y un aumento en 93 el número de medidas nuevas.

2.3. Emisión $H\alpha$

La temperatura de una estrella disminuye desde el núcleo hacia el exterior, hasta que se alcanza la cromosfera, donde la temperatura vuelve a aumentar. Esta temperatura es tan grande que llega a arrancar electrones del átomo de hidrógeno produciendo, entre otras, la línea de Balmer H α a una longitud de onda de 6563 Å. Esta línea de emision es un indicativo muy importante de actividad en una estrella. La manera de obtener este valor es a través de los espectros mediante la medida de la anchura equivalente de la línea. Sin embargo, existe una peculiaridad en este tipo de estrellas, y es que no se puede definir un continuo claro para realizar las medida, de forma que se define un pseudo-continuo a partir del cual medir la anchura equivalente, de ahí que a partir de

Figura 2.3: Esquema de la proyección de la velocidad ecuatorial sobre la línea de visión desde Tierra. El ángulo i, es la inclinación del eje de rotación de la estrella con respecto a la misma línea de visión.

ahora, la denominaremos, pseudo-anchura equivalente (pEW).

La emisión de la línea de H α en las estrellas de tipo M, es la mayor de todas las líneas cromosféricas. Si además tenemos en cuenta que estas estrellas emiten muy débilmente en la zona azul del espectro, tenemos que la línea de H α es el principal trazador de actividad cromosférica.

Para obtener datos de la línea de H α , se partió inicialmente del estudio previo de Palomar/Michigan Satate University (PMSU) 1 y 2 (Reid et al. 1995 y Hawley et al. 1996), Phan-Bao et al. (2006), Caballero et al. (2010), Lépine et al. (2013) y Riaz et al. (2006). La búsqueda continuó en la base de datos del CDS y diversos artículos publicados (Gizis et al. 2002; West et al. 2008; Shkolnik et al. 2009; y la tabla completa de datos de Lépine et al. 2013), además se ha tenido la colaboración del resto del miembros del proyecto CARMENES (Martínez-Rodriguez 2014), que ha proporcionado un total de 33 nuevas medidas, o las aportaciones de Alonso-Floriano et al. (2014). Este último estudio se centra en medir líneas de H α en espectros de baja resolución obtenidos con CAFOS y ha proporcionado un total de 405 nuevas medidas. En total, contando las pocas medidas nuevas encontradas en la bibliografía y las que se han medido por integrantes del proyecto, se ha llegado a recopilar 1766 medidas de $pEW(H\alpha)$, lo que supone más del 83 % del total de estrellas del catálogo.

En general solo se tiene una sola medida de $pEW(H\alpha)$, salvo con el artículo de Lépine et al. (2013) que aporta una gran cantidad de nuevas medidas, aunque en la gran mayoría de casos sigue siendo la misma. En el artículo se advierte que la medida de $pEW(H\alpha)$ puede estar subestimada. Este fenómeno queda reflejado en la Fig. 2.4. Basándonos en las incertidumbres típicas en este tipo de medida de anchuras equivalentes que se manejan en la literatura, vemos como hay dos estrellas en el que, aún teniendo en cuenta este valor típico, su valor está claramente muy por encima de lo que se esperaba, incluso con la subestimación de la medida. Estas estrellas son G 080-021 (J03473-019) y G 208-042 (J19511+464). La razón por la cual estas dos estrellas tienen una actividad muy por encima de lo que obtuvo en primera instancia, tiene varias explicaciones. Si descartamos errores en la reducción de datos, solo nos queda que en el momento en el que se tomó su espectro la segunda vez, la estrella se encontraba en algún proceso de actividad estelar, ya sea un fenómeno estacional, como es el ciclo de actividad de una estrella, o un fenómeno espontáneo, como son las fulguraciones, protuberancias, etc.

Figura 2.4: En el eje x se representa la pseudo-anchura equivalente $pEW(H\alpha)$ de la base de datos de CARMENCITA previo a este trabajo que tienen un valor distinto en la tabla final de Lépine et al. (2013), eje y, donde se da el último valor obtenido hasta la fecha. La línea continua en azul, representa la referencia de una medida idéntica entre CARMENCITA y la tabla de Lépine et al. (2013).

2.4. Índice de actividad \mathbf{R}'_{HK}

Las líneas del doblete del calcio ionizado Ca II H y K, se forman a una longitud de onda de 3968.47 y 3933.67 Å respectivamente. Estas líneas son típicas en las regiones de alrededor de las manchas solares, y por ende, de manchas estelares, lo que las hacen también buenas candidatas para medir la actividad estelar. Sin embargo, estas líneas no se expresan como pseudo-anchura equivalente, sino que suelen ser convertidas a flujo en un proceso por el cual están involucradas tanto las pseudo-anchuras de la línea H, K, como las magnitudes de las bandas $V \ y R$. A esta conversión se le denomina R_{HK} , mientras que R'_{HK} es la medida en flujo, una vez que sustraído la contribución fotosférica (Wright et al. 2004).

En el artículo de Walkowicz et al. (2009) define a las estrellas M activas como aquellas que, a parte de poseer una línea de H α , tienen una línea de Ca II, que en algunos casos es tan prominente que puede llegar a medirse en baja resolución. Tanto la línea de H α , como la de Ca II (particularmente importante la línea Ca II K, ya que la línea de Ca II H está convolucionada con la línea de H ε) son las principales responsables del enfriamiento de las estrellas de tipo M. Mientras que la línea de H α traza las regiones más calientes ($\geq 7000 K$), las líneas de Ca II H& K trazan las regiones más frías de la cromosfera, entre la temperatura mínima y unos 6000 K. Lo que hace que estas líneas sean tan importantes para trazar la estructura de la cromosfera de las estrellas de tipo M.

A pesar de una gran campaña de monitorización y medición de las líneas Ca II H& K, a través del programa del Monte Wilson que duró desde 1966 hasta 1998, existen muy pocas medidas de estas líneas para las estrellas que forman parte del catálogo CARMENCITA. Como se ha hecho en anteriores búsquedas de parámetros, se ha recurrido a la base de datos del CDS y a al artículo de Herrero et al. (2012) para buscar datos previos. Aún así, esta línea que mide la actividad de una estrella, es anecdótica para el presente trabajo, con tan solo 36 datos encontrados.

Capítulo 3

Resultados y discusión

3.1. Índices de actividad

3.1.1. Indice de actividad $H\alpha$

Para evaluar cuanta emisión de H α hay en nuestras estrellas M medimos la pseudoanchura equivalente que se denota con las siglas $pEW(H\alpha)$ en la tabla de CARMEN-CITA. Este cálculo está hecho con respecto al flujo en una región del continuo cercano a donde se produce la línea, de forma que obtenemos un valor relativo en unidades de longitud de onda (\mathring{A}). Nótese que para la línea de emisión de H α el valor de $pEW(H\alpha)$, por convenio, es negativo. Todos los valores de $pEW(H\alpha)$ se dan en la Tabla A.2.

Límite de acreción cromosférico

Estas dos líneas pueden ser utilizadas para muchos estudios, pero el interés que tiene para el proyecto CARMENES es ayudar a seleccionar estrellas para la posible detección de exoplanetas. Relacionaremos esta propieda observacional, como lo es la pseudoanchura equivalente $pEW(H\alpha)$, con una propiedad intrínseca de la estrella como es su tipo espectral, y así obtener un criterio con el que poder diferenciar aquellas estrellas T Tauri o, lo que es lo mismo, estrellas en el que su máximo de edad son los 10 Ma.

En la Fig. 3.1 se representa $pEW(H\alpha)$ versus el tipo espectral de la estrella, donde se aprecia como las estrellas M de media tienen una emisión de líneas H α mucho mayor cuanto más fría sea la estrella. Este fenómeno ya fue estudiado por Basri & Marcy (1995), y se produce debido a que la luminosidad fotométrica decae rápidamente para las estrellas más frías, lo que produce un factor de abastecimiento constante para la cromosfera, produciendo un fuerte aumento de la línea de H α , y por tanto, de su anchura equivalente. En la gráfica representamos también con una línea de trazos discontinuo:

$$\log pEW(H\alpha) = 0.0893(Sp.Type) - 4.5767$$
(3.1)

La ecuación (3.1) se obtiene de ajustar matemáticamente el *criterio de satuación*, $L(H\alpha)/L(H_{bol}) = -3.3$. Esta ley empírica se obtine diréctamente de comparar este co-

Figura 3.1: En el eje x se representa el tipo espetral que va desde M0 = 0, hasta M8 = 8. En el eje y representamos la pseudo-anchura equivalente $pEW(H\alpha)$ y la línea de trazos corresponde al límite, puramente empírico, establecido por el criterio de saturación. La denominación de colores, azul (Delta) y verde (Alpha, Beta y Gamma), hace referencia a la importancia que tiene en CARMENCITA, siendo una primera clasificación para seleccionar las estrellas a observar. Las estrellas Delta son aquellas que forman parte de un sistema binario o múltiple, lo que las descarta directamente. El resto de estrellas se clasifican por su cercanía y luminosidad, desde Alpha, como las más importantes, hasta Gamma, las más débiles.

ciente de luminosidades con el tipo espectral (Barrado y Navascués & Martín 2003). El criterio para diferenciar las estrellas jovenes (T Tauris) solo tiene validez hasta estrellas de tipo espectral M5.5. Este criterio es aplicable también a las enanas marrones más jóvenes, ya que comparten propiedades muy similares a las estrellas T Tauri clásicas.

Estrellas muy activas

En la Fig. 3.1 vemos como casi todas las estrellas, hasta donde se puede aplicar este criterio, tienen un comportamiento de emisión en H α dentro de lo que se espera para una estrella M que ha perdido la envoltura y está en condiciones de ser estudiada para la detección de exoplanetas. Caben destacar la siguiente estrella:

G 116-072 (J09593+438E): Por su exceso de emisión de H α (M 3.5V y H $\alpha = -15.49 \text{ Å}$ [PMSU]), nos haría pensar que se trata de una estrella T Tauri. Sabemos que se trata de una estrella binaria visual que forma pareja con G 116-073 (J09593+438W) de la cual se separa 23 segundos de arco (Poveda et al. 1993), es decir, hay suficiente resolución espacial para no superponer ambas medidas de H α de ambas estrellas. Hay que tener en cuenta que el criterio de saturación queda un poco por encima del ajuste matemático. Este resultado nos hace pensar que pueda tener un disco débil de gas y polvo, o más probablemente, que el espectro se haya tomado en un momento de mucha actividad estelar, como pueda ser una fulguración.

Figura 3.2: Distribuciones espectrales de energía de las estrellas del catálogo de CARMENCITA (Holgado 2014) con emisiones de H α por encima de lo esperado.

- HD 38B (J00056+458): Esta estrella (M 0.0V y H $\alpha = -5.85 \text{ Å}$ [PMSU]) es parte de un sistema doble (HD 38A) o posiblemente triple (CCDM J00057+4548ABF), separada apenas 7 segundos de arco de su compañera más cercana. Dado que su tipo espectral es muy temprano, su exceso de emisión con respecto a las estrellas del mismo tipo puede que se deba a que se encuentre en una fase temprana de la secuencia principal y que tenga aún un remanente de disco protoplanetario, o bien ha sido obtenido un espectro en un momento de alta actividad de la estrella.
- LP 423-031 (J07523+162): En este caso concreto, a la estrella (M 6.0V, H $\alpha = -25.4 \text{ Å}$ [Alonso-Floriano et al. (2014)] y H $\alpha = -22.26 \text{ Å}$ [Shkolnik et al. (2009)]) no puede aplicarse el criterio de Barrado y Navascués & Martín. Esta estrella aislada no ha sido muy estudiada por su actividad y no hay valores de su periodo o edad, para saber si guarda alguna relación con su actividad. De esta estrella existen dos medidas de H α con valores parecidos, lo que hace pensar que su alta actividad está asociada a una velocidad de rotación alta también (Fig. 3.4).
- AZ Cnc (J08404+184): Esta estrella aislada, es un caso parecido al anterior (M 6.0V y H $\alpha = -22.68 \text{ Å}$ [Shkolnik et al. (2009)]). En esta ocasión solo existe una medida de actividad en la literatura para saber si su medida puede interpretarse como una relación con su alta velocidad de rotación, o porque su espectro ha sido tomado en un momento especial de actividad cromosférica.

Para descartar definitivamente que no se tratan de estrellas jóvenes con un posible disco de acreción, utilizamos las distribuciones espectrales de energías (SED) de cada estrella para comprobar visualmente si presena un exceso en el infrarrojo (Holgado 2014), tan característico de este tipo de estrellas jóvenes. Como vemos en la Fig. 3.2, ninguna de la estrellas presenta un exceso de acreción a longitudes de onda del infrarrojo, por lo que se descarta esta opción y se tiene más presente que se trate de un momento de especial actividad de la estrella. Especial atención requiere la estrella J00056+458 que presenta una mayor actividad debido a que forma parte de un sistema binario y su distribución espectral de energía queda contaminado, tal y como se había pensado desde un principio.

La mayor parte de los exoplanetas confirmados se encuentran en sistemas con edades mayores a 1000 Ma. El reto está en encontrar planetas mucho más jóvenes, en sistemas que cuenten con un disco, tales como las estrellas T Tauri, con una edad de entre 1 y 3 Ma, para poder estudiar la formación y evolución de los planetas. Estrellas con edades entre los 10 y 100 Ma son particularmente interesantes porque se encuentran a medio camino entre un disco protoplanetario, el final de la formación de planetas gigantes y el comienzo de la formación de planetas terrestres activos. Haciendo honor al reto de encontrar planetas con estas características, a G 116-072 se le ha estimado una edad de entre 25 y 300 Ma (Shkolnik et al. 2009), lo que quiere decir que es una estrella candidata a ser estudiada en profundidad ya que puede aportar mucha información al respecto y a día de hoy solo se ha tenido en cuenta para relacionarla con grupos de movimiento (Shkolnik et al. 2012), sin resultados.

3.1.2. Índice de actividad \mathbf{R}'_{HK}

Hemos mencionado la línea de H α como principal indicador de la actividad cromosférica de una estrella, pero no es el único indicador. En estrellas tipo Sol, además tenemos las líneas de resonancia del Ca II en el azul, el triplete del CaII en el infrarrojo, las líneas de resonancia del Fe II y del Mg II en el ultravioleta cercano. También hemos mencionado ya, en el apartado anterior, como las bandas H&K de la línea Ca II es la más intensa después de la banda Balmer del hidrógeno y traza las regiones más frías de la cromosfera.

Ambas líneas de actividad H α y Ca II tienen gran importancia en las estrellas de tipo M, aunque su relación con la estrella es aún tema de investigación, lo que queda claro es que por separado no ofrecen un escenario claro de la estructura cromosférica de la estrella, siendo la línea de H α la más importante. De modo que en este trabajo se ha intentado recopilar toda la información posible de los catálogos disponibles en la red y cuyos resultados se muestran en la Tabla A.2, para poder obtener alguna relación entre ambos indicadores y no depender de una sola medida. En este caso de la línea de H α que es más observada históricamente.

Como se puede ver en la Fig. 3.3, no podemos llegar a ninguna conclusión con las medidas de las que disponemos ya que no tenemos suficientes datos, y obtener las líneas del Ca II H&K es muy complicado ya que requiere de espectrografía de alta resolución, que aún no se ha tomado en esta banda concreta. En principio tendríamos que apreciar un aumento lineal de la pareja (Ca II H&K, H α), dado que ambas líneas son indicadores de la actividad de la estrella. Por otro lado en la Fig. 3.3, deberíamos

Figura 3.3: (Izq.) En el eje x representamos, en escala logarítmica, la anchura equivalente de H α , mientras que en el eje y representamos el logaritmo del flujo de la línea de Ca II H&K. (Dcha.) Representamos el logaritmos de la línea de Ca II frente al tipo espectral, teniendo en cuenta que a cada número le corresponde el mismo subtipo espetral, es decir, $0 \equiv M0$ y así sucesivamente. En azul se representan aquellas estrellas M que son importantes para la selección de la muestra, y en negro las estrellas M que son parte de un sistema binario o múltiple.

de observar una gráfica muy parecida a la que vemos en la Fig. 3.1, pero al igual que antes, no tenemos suficientes datos como para poder obtener alguna conclusión.

3.2. Grupos de movimiento

Para poder tener una idea general de la formación de discos protoplanetarios y planetas alrededor de estrellas, es necesario abarcar un amplio espectro de edades de dichas estrellas. Se conocen abundantes planetas gigantes gaseosos, cuyo tiempo de formación es de aproximadamente una decena de millones de años, lo cual aporta mucha información para el estudio de la formación de planetas, pero hace falta llegar aún más allá e intentar detectar planetas telúricos tipo-Tierra para completar la información, cuyo tiempo medio de formación es de un orden de magnitud mayor que sus hermanas gaseosas. En este punto, las estrellas M tienen una ventaja con respecto a sus hermanas mayores. La relación entre su luminosidad y la masa del planeta a ser descubierto, hace posible la detección de exoplanetas de baja masa, de tipo Terrestre. Por otro lado, las enanas de tipo M son dominantes en número en el vecindario solar en una proporción más que abundante, dos de cada tres estrellas que están en la vecindad solar, son estrellas de tipo M, lo que nos proporciona una cantidad de objetos de estudio muy superior al resto de tipos estelares.

Llevar a cabo un estudio de los grupos de movimiento de las estrellas en el catálogo de CARMENCITA, es por tanto, una forma de saber la edad de la estrella y así poder determinar "a priori", si la estrella pueda albergar algún exoplaneta que sea susceptible de ser detectado por CARMENES. En la Tabla 3.1 aparecen las estrellas de las cuales se tiene información en la bibliografía, de a qué grupo de movimiento pertenecen.

Antes de continuar tenemos que definir qué es un grupo de movimiento. Cuando los remanentes de una asociación de estrellas se mueven por la galaxia con un poco de coherencia, entonces decimos que las estrellas pertenecen a un grupo de movimiento.

Desafortunadamente, hay muy pocas estrellas de CARMENCITA que se hayan identificado en alguno de los grupos de movimiento que existen hoy en día. De todos

Grupo de Movimiento	Karmn	Tipo esp.	$pEW(H\alpha)$	$v \sin i$	Р	Edad
Cúmulo			$[\mathring{A}]$	$[m \ s^{-1}]$	[d]	[Ma]
$Taurus^{a,b}$	J04206 + 272	M $4.5 V$	No	No	No	1-2
	J04313 + 241	M $4.5 V$	No	Si	No	
	J04433 + 296	M 5.0 V	No	No	No	
TW Hydrae ^{c}	J11477+008	M 4.0 V	Si	Si	No	8
	J13196 + 333	M $1.5 V$	Si	Si	No	
	J13457 + 148	M $1.5 V$	Si	Si	No	
β Pictoris ^d	J00325+074	M 4.0 V	Si	Si	No	12
	J04376-024	M $1.1 V$	Si	Si	Si	
	J05019 + 011	M $4.0 V$	Si	No	No	
	J07295 + 359	M $1.5 V$	Si	Si	No	
	J09362 + 375	M $0.5 V$	Si	Si	No	
	J10359 + 288	M $3.0 V$	No	No	No	
	J21185 + 302	M $1.5 V$	Si	Si	No	
	J21376 + 016	M $4.5 V$	Si	No	Si	
AB Doradus ^{e,d}	J00489+445	M 3.0 V	No	No	Si	50
	J03332 + 462	M $0.0 V$	No	No	No	
	J03473-019	M $3.5 V$	Si	No	Si	
	J05599 + 585	M $4.0 V$	No	No	No	
	J10043 + 503	M $2.5 V$	No	Si	Si	
	J22234 + 324	M $1.0 V$	Si	Si	No	
	J23060 + 639	M $0.0 V$	Si	No	Si	
$Castor^{f}$	J05322+098	$M \ 3.5 \ V$	Si	Si	Si	200
	J07319 + 362N	M $4.0 V$	Si	Si	No	
	J07319 + 362S	M $2.5 V$	Si	Si	No	
	J07346 + 318	M $1.0 V$	Si	No	Si	
	J07361-031	M $1.0 V$	No	No	Si	
	J08298 + 267	M $6.5 V$	Si	Si	No	
	J08316 + 193N	M $4.0 V$	Si	Si	No	
	J08316 + 193S	M $3.5 V$	Si	No	Si	
	J10196 + 198	M $3.0 V$	Si	Si	Si	
	J18548 + 109	M $3.5 V$	No	No	No	
	J18554 + 084	M $3.5 V$	Si	Si	No	
	J21584 + 755	M $0.5 V$	No	Si	No	
	J22012 + 283	M $4.0 V$	Si	Si	Si	
	J22058-119	M $0.0 V$	No	No	No	
	J22160 + 546	M $4.0 V$	Si	No	No	
	J23083-154	M $0.0 V$	Si	Si	Si	
	$J_{23318+199E}$	M $3.5 V$	Si	Si	No	
	J23318 + 199W	M $4.5 V$	Si	Si	Si	
Ursa Major g	J11026+219	M 2.0 V	No	Si	No	500
Hyades Group ^h	J17198 + 265	M $4.5 V$	Si	Si	Si	~ 600
	J17199 + 265	M $3.5 V$	Si	Si	Si	
Hyades Cluster ⁱ	J04123+162	M 3.5 V	No	Si	No	~ 600
	J04238 + 149	M $3.5 V$	No	No	No	

Tabla 3.1: Es	strellas en grupos	de movimiento en	CARMENCITA.
---------------	--------------------	------------------	-------------

Referencias: a) Bertout et al. (2006). b) Rebull et al. (2010). c) Reid (2002). d) Schlieder, J. E. et al. (2012). e) Zuckerman et al. (2004). f) Caballero, J. A. (2010). g) Soderblom, D.

R. (1993). h) Giclas, H. L. et al. (1962). i) Stern et al. (1995).

los grupos de movimiento que se tienen constancia, AB Doradus, Castor, TW Hydrae, Taurus y β Pictoris son los únicos en los que se han encontrado alguna estrella del catálogo.

Este hecho es muy interesante para el estudio de la evolución y formación de planetas, ya que tenemos estrellas de muy diversa consideración. Grupos más bien jóvenes, en los que se están empezando a formar los planetas gaseosos; de edad intermedia, en los que planetas gigantes gaseosos deberían de ser un hecho y planetas telúricos estarían empezando a formarse y por último tenemos al grupo TW Hydrae, que contiene estrellas con edades avanzadas, lo que indicaría que la probabilidad de que se haya formado un planeta tipo-Tierra es grande. El inconveniente de todo este razonamiento es que la mayor parte de nuestras estrellas del catálogo no tienen un grupo de movimiento asociado y no tienen una edad conocida.

Figura 3.4: Relación entre el periodo de rotación de una estrella y su índice de actividad estelar H α . El eje que mide el periodo, está en escala logarítmica, para apreciar visualmente la nube de puntos a periodos altos de rotación.

El denominado "Bombardeo Tardío Masivo" (Late Heavy Bombardment, LHB) ocurrió en nuestro Sistema Solar hace aproximadamente 700 Ma. La teoría más aceptada relaciona la migración de los planetas gaseosos con el LHB, provocado por la perturbación de las órbitas de los objetos en el cinturón de asteroides (Gomes et al. 2005). Por supuesto, este fenómeno no es una característica única de nuestro sistema de planetas. El momento en el que se produzca el LHB depende de la cantidad de gas en la nube de la cual se formó la estrella y la probabilidad de que un planeta se forme. Si tenemos en cuenta que el tiempo medio de formación de un planeta gigante está entre 10 y 100 Ma (los más rápidos), esto implicaría que las estrellas en los grupos AB Doradus, Castor y Ursa Major, podrían estar en alguna fase del LHB.

3.3. Velocidad rotacional y parámetros estelares

En el proyecto MEarth hemos podido encontrar muchos de de los periodos (Tabla A.2), pero la gran mayoría de las observaciones realizadas están aún sin procesar y por ese motivo el número de datos encontrados es menor de lo esperado. Todas las referencias a las medidas de los periodos están dispuestos en la columna Refs. de la tabla citada, para evitar una saturación innecesaria en el texto.

Mientras que las estrellas M se dirigen hacia la secuencia principal están colapsando, lo que implica una disminución del momento de inercia. Si suponemos que el momento angular se conserva en la estrella, la velocidad angular de la misma aumentará mientras dure la contracción. Este proceso se da hasta que la estrella alcanza la ZAMS (zero age main-sequence), momento en el cual, se inicia la pérdida de velocidad angular. Esta pérdida puede estar relacionada con la interacción de la estrella con el disco protoplanetario y vientos estelares, pero es aún objeto de estudio.

Este fenómeno se pone de manifiesto en la Fig. 3.4, donde podemos observar que

Figura 3.5: En esta gráfica se expresa la relación que existe entre el radio de la estrella y el periodo de rotación de la misma.

las estrellas más jóvenes (periodo de rotación más corto) tienen una gran actividad en el índice H α . A medida que la estrella evoluciona y el periodo de rotación es mayor, observamos como en las estrellas tiende a estabilizarse la actividad y se agrupan en una zona de la gráfica más plana, donde el fenómeno principal es la absorción de H α en vez de emisión.

De entre todas las estrellas de la gráfica, tenemos que hacer especial mención a V647 Her (J17199+265), ya que su valor de actividad H α está muy por encima de lo que se espera para una estrella con un periodo como el suyo (H $\alpha = -9.32 \text{ Å}$ y P = 19.80 d). Su valor se ha obtenido de la base de datos de Lépine et al. (2013), mientras que si comparamos con otros valores obtenidos con anterioridad, como por ejemplo Walkowicz et al. (2009), en el que se obtiene un valor H $\alpha = -1.48 \text{ Å}$, podemos suponer que en el momento en el que la estrella fue medida por última vez, se podría encontrar en un proceso de alta actividad transitoria.

Hay que aclarar un punto importante, y es que cuando hablamos de periodos de las estrellas, nos referimos al periodo de rotación del astro, sin importar que se encuentre en un sistema binario o múltiple. Esto es por dos motivos: en primer lugar, porque si la estrella o estrellas compañeras están lo suficientemente lejos, no interferirán en las medidas y estaremos obteniendo el periodo de rotación de la estrella y no del sistema. En segundo lugar, si las estrellas están lo suficientemente cerca como para que su periodo orbital sea comparable al de rotación, tampoco sería un problema, porque se produce un acoplamiento de marea, es decir, el periodo de rotación de la estrella y el de traslación orbital se sincronizan, lo que implica que en cualquier caso estaremos midiendo el periodo de rotación de la estrella.

Aclarado este punto, nos fijamos en la Fig. 3.5. En esta gráfica se expresa la relación entre el radio teórico de la estrella (A. Reiners, priv. comm.) asociado a su tipo espetral (Tabla 3.2) y su periodo, de la que podemos obtener una primera conclusión: las estrellas enanas de tipo M rotan más despacio cuanto más pequeña es la estrella. Tabla 3.2: Datos teóricos para la temperatura efectiva y el radio de estrellas enanas de tipo espectral M.

Tipo Esp.	T_{eff}	\mathbf{R}
	[K]	$[R_{\odot}]$
M0.0V	3850	0.54
M0.5V	3790	0.52
M1.0V	3720	0.50
M1.5V	3650	0.46
M2.0V	3580	0.41
M2.5V	3520	0.37
M3.0V	3470	0.32
M3.5V	3420	0.27
M4.0V	3370	0.25
M4.5V	3310	0.22
M5.0V	3200	0.18
M5.5V	3070	0.16
M6.0V	2900	0.13
M6.5V	2720	0.12
M7.0V	2620	0.11
M7.5V	2550	0.11
M8.0V	2490	0.10
M8.5V	2440	0.10
M9.0V	2400	0.10
M9.5V	2350	0.10

Este fenómeno ya ha sido observado previamente por otros autores con catálogos de estrellas mucho más amplios, como es el caso de las 34,030 estrellas de *Kepler* estudiadas en McQuillan et al. (2013, 2014).

3.3.1. Velocidad ecuatorial

Como ya hemos mencionado en el capítulo anterior, la velocidad rotacional medida desde tierra, es decir, su proyección, y la velocidad ecuatorial, están relacionadas por la inclinación del ecuador de la estrella. La inclinación, es por tanto, un parámetro de la estrella que, *a priori*, no conocemos, pero que podemos estimar mediante la suposición teórica de un radio estelar, del que ya hemos hablado en la sección anterior.

El resultado que se obtendría no es más que una estimación grosera, debido a los grandes errores asociados a esta medida, pero que puede ayudar mucho cuando se trata de seleccionar las mejores estrellas de entre un millar. Por otro lado, también puede ser muy aconsejable esta estimación, para saber qué método podemos aplicar en la detección de exoplanetas, ya que las estrellas con una inclinación muy baja ($\sim 90^{\circ}$) son susceptibles de ser estudiadas con el método de los tránsitos, mientras que las estrellas que en una primera aproximación no cumplan este requisito, sería mejor utilizar la técnica de la medida de la velocidad radial para la detección de sus exoplanetas (Fig. 3.6).

Para poder estimar algún valor de la inclinación de las estrellas, utilizamos la relación de la física clásica que relaciona el periodo, el radio de la estrella y su velocidad radial:

$$v\sin i = \frac{2\pi R}{P}\sin i \tag{3.2}$$

de donde:

$$\sin i = \frac{P}{2\pi R} (v \sin i) \tag{3.3}$$

Figura 3.6: Gráfica comparativa del radio de la estrella con la inclinación dada por el sin *i*. Para calcular los límites superior (rojo) e inferior (negro), se ha variado la distancia estrella-planeta (*a* en la ecuación 3.5). Para ello, en el más desfavorable suponemos una distancia a su estrella de 0.12 au, y para el caso más favorable, una distancia de 0.01 au. Siempre contando con una probabilidad de transición del 80%. El límite inferior hace referencia a la zona de habitabilidad de la estrella, donde la superficie del planeta permitiría la presencia de agua líquida ($T_{sup} = 273 - 373^{\circ}$ C).

El periodo es difícil de estimar con la fotometría debido a que la actividad estelar es muy intensa, lo que implica que las manchas estelares puedan tener periodos menores que los de la rotación de la estrella. Esto conlleva un error considerable en la medida de periodos, de hasta el 10% según el caso, tal y como se aprecia en la Tabla A.2. Conocida la velocidad radial proyectada en la dirección de observación $(v \sin i)$, el periodo y el radio teórico asociado a su tipo espectral, podemos hacer una estimación de la inclinación (Tabla 3.3).

Tabla 3.3: Estrellas que cumplen las condiciones para ser observada mediante tránsitos.

Karmn	SIMBAD	SpT	R	$\sin i$	i
			$[R_{\odot}]$		[deg]
J13007+123*	DT Vir AB	M2.0V	0.41	0.982645	\pm 79.3
J05068-215E	BD-21 1074 A	M1.5V	0.46	0.982719	\pm 79.3
J00428 + 355	FF And	M1.0V	0.50	0.987851	\pm 81.1

Nota: (*) Estrella binaria. El signo \pm en la inclinación, se debe a que la función seno es bi-valuada.

Estudiar una estrella mediante tránsitos para la detección de exoplanetas, depende de varios factores. En primer lugar, depende de la inclinación de la órbita del planeta alrededor de la estrella. En segundo lugar, hay un factor temporal debido al periodo de la órbita del planeta. Y un tercer factor que depende de la sensibilidad en el método de detección, ya que la variación de magnitud es la suma del tamaño del exoplaneta y las características técnicas del telescopio utilizado. El segundo factor puede minimizarse monitorizando la estrella a lo largo del tiempo. En cuanto al tercer factor, va disminuyendo en importancia a medida que se mejora la instrumentación. El factor más importante es la perspectiva geométrica del problema.

La probabilidad de tránsito es una cuestión de geometría, que podemos expresar como la probabilidad de que transite, teniendo en cuenta el ángulo de inclinación definido entre R_1 y R_2 , divido entre todas las inclinaciones posibles:

$$P_{\rm tran} = \frac{\int_0^{\frac{(R_1+R_2)}{a}} d(\cos i)}{\int_0^1 d(\cos i)} = \frac{R_1 + R_2}{a}$$
(3.4)

donde R_1 es el radio de la estrella, R_2 es el radio del exoplaneta y a el semieje mayor. Si tenemos en cuenta que $R_1 \gg R_2$, la ecuación se simplifica aún más $P_{\text{tran}} \simeq R_1 a^{-1}$.

Por otro lado, nos interesa diferenciar entre las estrellas que pueden ser observadas por tránsitos y las que no. Para ello utilizamos el criterio de que siempre que la probabilidad de tránsito sea superior al 80 %, esa estrella será susceptible de ser estudiada mediante dicho método. Para ello utilizaremos:

$$P_{\rm tran}(80\%) = \frac{\int_0^{\frac{R_1}{a}} d(\cos i)}{\int_0^x d(\cos i)} \quad \to \quad x = 1.25\frac{R_1}{a} \tag{3.5}$$

donde x quiere decir $\cos i$. Hemos supuesto el caso de que $R_1 \gg R_2$.

En la Tabla 3.3 se muestran los resultados más interesantes para que un estudio posterior realice un seguimiento detallado. **J13007+123** es una estrella binaria, lo que le confiere un interés especial dado que hay pocas estrellas de estas características a las que se le hayan encontrado un planeta, como es el caso de CM Dra AB (Deeg et al. 2008).

Capítulo 4

Conclusiones

• Se ha indagado en la base de datos de VizieR y en más de cincuenta artículos individuales para recopilar una cantidad importante de información para el catálogo CARMENCITA. En particular, se han recopilado 172 periodos de rotación de estrellas, 93 medidas de $v \sin i$, 36 medidas de la cantidad R'_{HK} y 481 nuevas medidas de $pEW(H\alpha)$.

• Hemos presentado una lista de 44 estrellas de CARMENCITA pertenecientes a distintos grupo de movimiento. Con ello tenemos una muy buena estimación de la edad de la estrella (Tabla 3.1).

• Con los datos recopilados, se han representado el índice de actividad $pEW(H\alpha)$ frente al periodo (Fig. 3.4), donde se ha obtenido una estrella, V647 Her, con un valor por encima de lo esperado.

• En cuanto al índice de actividad R'_{HK} , con los datos obtenidos es anecdótica cualquier relación que pueda observarse en las gráficas de la Fig. 3.3.

• Se presentan también los resultados que relacionan la velocidad rotacional $(v \sin i)$, el periodo y el radio de la estrella, para obtener la inclinación del eje de rotación de la estrella (Fig. 3.6).

• Hallada la relación anterior, podemos obtener los ángulos de inclinación de estrellas que sean susceptibles de ser observadas mediante tránsitos (Tabla 3.3). La complejidad del sistema para que ocurra un tránsito da como resultado 3 posibles estrellas para un estudio posterior más en profundidad (**DT Vir AB**, **BD-21 1074 A** y **FF And**).

• Este trabajo, junto con trabajos de los otros estudiantes de CARMENES, ha dado pie a la publicación, hasta la fecha, del póster¹: "Cool Stars 18", The 18th Cool Stars, Stellar Systems and the Sun workshop (9 - 13 June 2014, Flagstaff, Arizona, USA).

¹http://www2.lowell.edu/workshops/coolstars18/abstracts-posters/ poster-abstract-286.html

Bibliografía

- Antonova, A., Hallinan, G., Doyle, J. G., et al. 2013, A&A, 549, A131
- Basri, G. & Marcy, G. W. 1995, AJ 109:762
- Berta, Z.K., Charbonneau, D., Bean, J., et al. 2011, ApJ, 736,12
- Bertout, C. & Genova, F. 2006, A&A, 1,1
- Barrado y Navascués, David & Martín & Eduardo 2003, AJ, 126,2997
- Bidelman, W. P. 1988, Bulletin d'Information du Centre de Donnees Stellaires, 34,35
- Bergfors, C., Brandner, W., Janson, M., et al. 2010, A&A, 520, A54
- Browning, M. K., Basri, G., Marcy, G. W., et al. 2010, A&A, 520,91
- Caballero, J. A. 2010 A&A, 514,A98
- Caballero, J. A., Montes, David, et al. 2010, A&A, 520, A91
- Chugainov, P. F. 1974, Krym. Astrof. Obser., 52,3
- Deeg, H. J., Ocaña, B., Kozhevnikov, V. P., et al. 2008, A&A, 480,563
- Delfosse, X., Forveille, T., Beuzit, J.L., et al. 1999, A&A, 344,897
- Deshpande, R., Martín, E. L., Montgomery, M. M., et al. 2012, AJ, 144,99
- Devor J., Charbonneau D., O'donovan F.T., et al. 2008, AJ, 135,850
- Herrero, E., Ribas, I., Jordi, C., et al. 2012, A&A, 537, A147
- Giacobbe, P., Damasso, M., Sozzetti, A., et al. 2012, MNRAS, 424,3101
- Giclas, H. L., Burham, R., Thomas, N. G. Jr. 1962 Lowell Observatory, 118, V-18
- Gizis, John E., Reid, I. Neill & Hawley, Suzanne L. 2002, AJ, 123,3356
- Głebocki, R., Gnaciński, P. 2005, yCat, 3244
- Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. 2005, Nature, 435,466
- Hartman, J. D., Bakos, G., et al. 2004, AJ, 128,1761
- Hartman, J. D., Bakos, G., et al. 2010, MNRAS, 408,475
- Hartman, J. D., Bakos, G., et al. 2011, AJ, 141,166
- Hawley, S. L., Gizis, J. E. & Reid, I. N. 1996, AJ, 112,2799
- Herrero, E., Ribas, I., Jordi, C., et al. 2012, A&A, 537, A147
- Holgado, G. 2014, MSc thesis, Universidad Complutense de Madrid, Spain
- Houdebine, E. R. 2010, NMRAS, 407,1657
- Hunt-Walker, N. M., Hilton, E. J., Kowalski, A. F., et al. 2012, ASP, 124,545
- Irwin, J, Zachory, B. K., Burke, C. J., et al. 2010, ApJ, 747,56
- Jenkins J. S., Ramsey L. W., Jones, H.R.A., et al. 2009, ApJ, 704,975
- Kiraga, M. 2012, Acta Astron., 62,67
- Kiraga, M. & Stepien K. 2007, Acta Astron., 57,149
- Kiraga, M. & Stepien K. 2013, Acta Astron., 63,53
- Koen, C. & Eyer, L. 2002, NMRAS, 331,45
- Korhonen, H., Vida, K., Husarik, M., et al. 2010, Atron. Nach., 331,772
- Lépine, S., Hilton, Erin J., Mann, A. W., et al. 2013, AJ, 145,102
- Norton, A. J., Wheatley, P. J., West, R. G., et al. 2007, A&A, 467,785
- Martínez-Rodríguez, H. 2014, MSc thesis, Universidad Complutense de Madrid, Spain
- Mayer, M. & Queloz, D. 1995, Nature, 378,355

- Messina, S., Desidera, S., Turatto, M., et al. 2010, A&A, 520, A15
- McQuillan, A., Aigrain, A. & Mazeh, T. 2013, MNRAS, 432,1203
- McQuillan, A., Mazeh, T., Aigrain, S. 2014, ApJS, 211, 24
- Montagnier, G., Ségransan, D., Beuzit, J. L., et al. 2006, A&A, 460, L19
- Phan-Bao, N. & Bessel, M. S. 2006, A&A, 446,515
- Plavec, M. 1960, Astron. Inst. Czechoslovak, BAC11,197
- Pojmański, G. 2002, Acta Astron., 52,397
- Poveda, A., Herrera, M. A. et al. 1993, A&A, 28,43
- Quirrenbach, A., Amado, P. J., Caballero, J. A., et al. 2012, SPIE, 276,545
- Rebull, L. M., Padgett, D. L., McCabe, C. E., et al. 2010, ApJS, 186,259
- Reid, N. 2002, NMRAS, 342,847
- Reid, I.N., Cruz, K.L., Allen, P., et al. 2004, AJ, 128,463
- Reiners, A. 2007, A&A, 467,259
- Reiners, A., Joshi, A.& Goldman, B. 2012, AJ, 143,93
- Schlieder, J. E., Lépine, S. & Simon, M. 2010, AJ, 140,119
- Schlieder, J. E., Lépine, S. & Simon, M. 2012, AJ, 144,109
- Shkolnik, E., Liu, M. C. & Reid, I. N. 2009, ApJ, 699,649
- Shkolnik, E., Andrada-Escudé, G., et al. 2012, ApJ, 758,56
- Soderblom, D. R. & Mayor, M. 1993, AJ, 105,1
- Stauffer, J. R. & Hartmann, L. W. 1986, ApJS, 61,531
- Stern, Robert A., Schmitt, Juergen H. M. M. & Kahabka, Peter T. 1995, ApJ, 448,683
- Reid, I. N., Hawley, S. L. & Gizis, J. E. 1995, AJ, 110,1838
- Riaz, B., Gizis, J. E. & Harvin, J. 2006, AJ, 132,866
- Torres, C. A. O., Quast, G. R., da Silva, L., et al. 2006, A&A, 460,695
- Walkowicz, L. M., Hawley, S. L.& Bochanski, J. J. 2009, AJ, 137,3297
- West, A. A., Hawley, S. L., Bochanski, J. J., et al. 2008, AJ, 135,785
- White, R. J., Gabor, J. M. & Hillenbrand, L. A. 2007, AJ, 133,2524
- Wright, J. T., Marcy, G. W., Butler, R. P. & Vogt, S. S. 2004, ApJS, 152,261
- Zuckerman, B., Song, I., et al. 2004, ApJ, 613, L65

Apéndice A

Tabla de Datos

Estrella	Exoplaneta	SpT	М	a	Р	Método de
			$[M_{Jup}]$	[au]	[d]	Detección
GJ 27.1	b	M0.5 V	0.041	0.101	15.82	Velocidad
HIP 12961	b	M0 V	0.35	0.13	57.43	radial
GJ 160.2	b	M0 V	0.032	0.053	5.24	
Gl 163	b	M3.5	0.033	0.060	8.63	
	с		0.023	0.125	25.65	
	d		0.069	1.026	600.89	
GJ 176	b	M2.5 V	0.026	0.066	8.78	
Gl 179	b	M3.5	0.82	2.41	2288.0	
GJ 180	b	M2 V	0.026	0.103	17.38	
	с		0.020	0.129	24.33	
HD 41004 B	b	M2	18.4	0.017	1.32	
GJ 229	b	M1/M2	0.1	0.97	471.0	
GJ 317	b	M3.5	1.8	1.15	691.78	
	С		2.0	30.0	< 10000.0	
GJ 3634	b	M2.5	0.022	0.028	2.645	
GJ 422	b	M3.5 V	0.031	0.119	26.16	
GJ 433	b	M1.5	0.0182	0.058	7.37	
	С		0.14	3.6	3693.0	
HIP 57050	b	M4 V	0.298	0.163	41.397	
Gl 581	d	M2.5 V	0.019	0.22	66.64	
	е		0.006	0.028	3.15	
	b		0.05	0.041	5.37	
	С		0.017	0.073	12.92	
HIP 79431	b	M3 V	2.1	0.36	111.7	
Gl 649	b	M1.5	0.328	1.135	598.3	
	С		0.03	0.043	4.48	
GJ 667 C	С	M1.5 V	0.0134	0.125	28.13	
	е		0.0085	0.213	62.24	
	f		0.0085	0.156	39.026	
	g		0.0145	0.549	256.2	
	d		0.0218	0.303	106.4	
	b		0.0172	0.050	7.199	

Tabla A.1: Relación de exoplanetas descubiertos en estrellas M.

Continúa en la siguiente página

Estrella	Exoplaneta	SpT	М	a	Р	Método de
		*	$[M_{Jup}]$	[au]	[d]	Detección
GJ 674	b	M2.5	0.037	0.039	4.69	
GJ 676A	с	M0 V	3.0	5.2	4400.0	
	d		0.014	0.0413	3.6	
	e		0.036	0.187	35.37	
	b		4.95	1.8	1050.3	
Gl 687	b	M3.5 V	0.058	0.164	38.14	
GJ 682	b	M3.5 V	0.014	0.08	17.48	
	с		0.027	0.176	57.32	
KOI-314	с	M1 V	0.003		23.01	
HD 208527	b	M1 III	9.9	2.1	875.5	
GJ 849	b	M3.5 V	0.9	2.35	1914.0	
	с		0.77		7049.0	
Gliese 876	b	M4 V	2.275	0.208	61.12	
	с		0.714	0.129	30.09	
	d		0.021	0.021	1.94	
	e		0.046	0.334	124.26	
HD 220074	b	M2 III	11.1	1.6	672.1	
GJ 3470	b	M1.5	0.044	0.035	3.34	Tránsitos
GJ 436	b	M2.5	0.037	0.028	2.644	
GJ 1214	b	Μ	0.02	0.014	1.58	
KOI-314	b	M1 V	0.012		13.78	
Kepler-45	b	Μ	0.505	0.027	2.45	
MOA-2009-BLG-387L	b	М	2.6	1.8	1970.0	Microlente
OGLE-05-390L	b	Μ	0.017	2.1	3500.0	
MOA-2010-BLG-328L	b	Μ	0.029	0.92		
MOA-2007-BLG-192-L	b	Μ	0.01	0.66		
2M 0103(AB)	b	М	13.0	84.0		Imagen
GU Psc	b	M3	11.0	2000.0		
2M 0122-2439	b	M3.5	13.0	52.0		
FU Tau	b	M7.25	15.0	800.0		
FW Tau	b	M4	10.0	330.0		
DH Tau	b	M0.5 V	11.0	330.0		
CD-35 2722	b	M1 V	31.0	67.0		
2M 044144	b	M8.5	7.5	15.0		
CHXR 73	b	M3.25	12.0	200.0		
2M1207	b	M8	4.0	46.0		
Ross $458(AB)$	с	M2 V	8.5	1168.0		
UScoCTIO 108	b	M7	16.0	670.0		
USco1612-1800	b	M3	26.0	430.0		
GSC 6214-210	b	M1	17.0	320.0		
Oph 11	b	M9	21.0	243.0	730000.0	
ROXs 12	b	M0	16.0	210.		
ROXs 42B	b	M0 D	10.0	140.0		

	54.55	m .			D 4		1 (5/)
Karmn	RA-DE	T. stp.	$pEW(H\alpha)$	Р.	Refs.	$v \sin i$	$\log(R_{HK})$
	(J2000)		[A]	[d]		$[ms^{-1}]$	
J00051+457	00:05:10.78 + 45:47:11.6	M1.0 V	0.47			2.76	
$J00056 \pm 458$	00:05:40.90 + 45:48:37.5	M0.0 V	-5.85			5.3 ± 1.0	-4.715 ± 0.162
100081 ± 479	$00:08:06.43 \pm 47:57:02.5$	M4.0 V	-2 39	4 37	Har11 ^r	0.01	
100136 ± 806	$00.13.38 81 \pm 80.30.56 9$	M1.5 V	0.13	4.01	110111	4.0	
100150-105	$00.15.00.01 \pm 12.22.010$	M2.0 V	0.13	70 5 1 7 9	I10n	4.0	
300138 ± 135	00:15:49.20 + 15:55:21.9	1V13.0 V	U.37	10.3± 1.0	Irw10		
J00162 + 198W	00:16:14.63 + 19:51:37.6	M4.0 V	-4.5 + 0.5 - 0.4	4.79	$Nor07^{\iota}$		
$100162 \pm 108E$	$00.16.16.08 \pm 10.51.51.5$	M4.0 V	0.5+0.1	104.0 ± 31.2	Irw10		
J00102+198E	00.10.10.08 +19.51.51.5	W14.0 V	-0.3 - 0.2	104.0 ± 31.2	11 W 10		
J00183 + 440	00:18:22.57 + 44:01:22.2	M1.0 V	0.0 ± 0.2			2.5	
J00184 + 440	00:18:25.50 + 44:01:37.6	M3.5 V	0.63			1.9	
J00219 + 492	00:21:57.81 + 49:12:38.0	M2.5 V	-2.4	6.18	Har11		
100245 ± 300	$00.24.34.78 \pm 30.02.29.5$	M4.5 V	-9.98	1.08 ± 0.02	Irw10		
100288 ± 503	$00.28.53 02 \pm 50.02.23.0$	M4.0 V	5 35	1.00 1.00 2	Har11		
100200+1070N	$00.28.55.52 \pm 50.22.55.0$	M0.0 V	-5.55	1.05	114111		
J00324+672N	00:32:29.71 + 67:14:08.0	M2.0 V	0.22			4.0	
J00325 + 074	00:32:34.81 + 07:29:27.1	M4.0 V	-3.97			14.7	
J00341 + 253	00:34:08.43 + 25:23:49.8	M0.0 V	-0.82	3.16	Nor07	$10.0\pm\ 2.0$	
J00374 + 515	00:37:25.99 + 51:33:07.3	M0.5 V	0.02	7.20	Har11		
$J00389 \pm 306$	00:38:58.79 + 30:36:58.4	M2.5 V	0.0 ± 0.2			2.5	
100305 ± 1405	$00.30.3340 \pm 14.54.180$	M4.0 V	1.7 ± 0.2	34.0 ± 0.6	Irw10		
100428 + 255	$00.49.48.91 \pm 25.29.55.4$	M1 0 V	-1.7 ± 0.2	0.0± 0.0	II w 10		
100428+355	00:42:48.21 + 35:52:55.4	MILO V	-1.54	2.17	Harii		
J00489 + 445	00:48:58.22 + 44:35:09.1	M3.0 V	-4.96	1.30	Harll		
J00505+248	00:50:33.19 + 24:49:01.0	M3.5 V	-3.53	1.69	Nor07		
J01013 + 613	01:01:20.06 + 61:21:56.0	M2.0 V	0.41			4.0	
J01025 + 716	01:02:32.13 + 71:40:47.6	M3.0 V	0.42			2.5	
101026 ± 623	$01:02:38.96 \pm 62:20:42.2$	M1.5 V	0.0 ± 0.2			2 49	-4.668 ± 0.207
101022 200	01.02.14.00 + 20.05.52.4	M2.0 V	0.55			2.40	-4.000 0.201
301032+200	$01.03.14.09 \pm 20.03.32.4$	W12.0 V	0.55			3.0	
J01033 + 623	01:03:19.72 + 62:21:55.7	M5.0 V	-10.1 ± 0.4	1.06 ± 0.02	Irw10		
$J01036 \pm 408$	01:03:40.12 + 40:51:28.9	M0.0 V	-0.99	0.25	Har11		
101066 ± 152	$01.06.4152 \pm 15.16.220$	M2.0 V	0.36			4.0	
101114 154	01.11.9542 + 15.26.915	MEO V	0.50			15 9 9 4	
J01114+134	01:11:23.42 + 13:20:21.3	M3.0 V	-8.50			10.2 ± 2.4	
J01125-169	01:12:30.53 - 16:59:57.0	M4.5 V	-2.33		· · ·	2.5	
J01133 + 589	01:13:19.77 + 58:55:22.4	M1.5 V	-0.83	0.8	$Kir13^{w}$		
J01178 + 054	01:17:53.26 + 05:28:25.7	M0.5 V	0.36			3.16	
J01221 + 221	01:22:10.28 + 22:09:03.2	M4.5 V	-2.83			20.0	
$J01383 \pm 572$	01:38:21.62 + 57:13:57.1	M2.5 V	0.53			4.0	
101200 170	01,20,01 20 17,57,02 7	M5.0 V	5 06584 0 2860			21.5	
101422 + 042	01.39.01.20 -17.37.02.7	M0.0 V	-5.0058± 0.5809			31.5	
$J01433 \pm 043$	01:43:20.15 + 04:19:17.2	M2.0 V	0.32			2.5	
J01453 + 465	01:45:18.20 + 46:32:07.8	M2.0 V	-1.46	4.12	Har11		
J01518-108	01:51:48.65 -10:48:12.0	M2.0 V	0.324			3.0	
J01518 + 644	01:51:51.08 + 64:26:06.1	M2.5 V	0.54			4.0	
101531-210	01.53.11.33 -21.05.43.3	M1.1 V	-0.38	2.84	$Kir12^{v}$		
101503 ± 585	$01.59.2350 \pm 58.31.162$	M40 V	5.0	2.01		13.8	
301333 + 385	$01.03.20.00 \pm 00.01.10.2$	W14.0 V	-0.0			10.0	
J02002+130	02:00:12.79 + 13:03:11.2	M3.5 V	-2.0 + 0.2			2.5	
J02015 + 637	02:01:35.33 + 63:46:11.9	M3.0 V	0.52			2.5	
102022 102	$02.02.1621 \pm 10.20.127$	MAEV	$1.6^{\pm 0.5}$			45	
J02022+103	$02.02.10.21 \pm 10.20.13.7$	W14.0 V	-1.0-0.3			4.0	
J02027 + 135	02:02:44.28 + 13:34:33.6	M4.5 V	-7.96	4.01	$Shk10^{p}$	6.6 ± 0.3	
J02050-176	02:05:04.93 - 17:36:52.9	M2.5 V	0.303	44.51	$Kir07^{h}$	3.0	
J02088 + 494	$02:08:53.60 \pm 49:26:56.6$	M3.5 V	-3.76			30.0	
102122 025	02.12.20, 01 + 02.24.21, 1	M15 V	0.27			2 00	5 402 - 0 181
302123+035	$02.12.20.91 \pm 05.34.31.1$	M11.5 V	0.37	0.001.0.01		3.99	-5.402 ± 0.181
J02171 + 354	02:17:09.93 + 35:26:33.0	M5.0 V	-10.0	0.28 ± 0.01	Irw10	28.2 ± 0.7	
J02207 + 029	02:20:46.26 + 02:58:37.5	M4.5 V	-3.22			23.3 ± 0.7	
J02234 + 227	02:23:26.64 + 22:44:06.9	M0.5 V	-0.62			$6.0\pm\ 2.0$	
J02256 + 375	02:25:38.42 + 37:32:34.0	M4.0 V	-2.63	15.29	Har11		
$J02362 \pm 068$	$02:36:15.36 \pm 06:52:19.1$	M4.0 V	-0.5 ± 0.2			2.5	
102442 ± 255	$02.44.1538 \pm 25.31.250$	M3.0 V	0.2702 ± 0.006			2.5	
J02442+200	$02.44.10.36 \pm 20.51.25.0$	M13.0 V	0.2702± 0.000		D :oof	2.0	
J02443+109W	02:44:21.38 + 10:57:41.2	M1.0 V	-1.41	3.32	Poj02 ⁷		
J02524 + 269	02:52:25.02 + 26:58:30.5	M1.0 V	0.44			4.0	
J02565 + 554W	02:56:34.35 + 55:26:14.5	M1.0 V	0.56			4.0	
J02565 + 554E	02:56:35.07 + 55:26:30.2	M3.0 V	0.48			4.0	
J03018-165S	03.01.51 43 -16.35.35 7	M3.5 V	-1.25			3.0	
102104 584	$02.10.2640 \pm 58.26.087$	M1.0 V	0.20			4.0	
100100+047	03.10.20.49 + 38.20.08.7	M11.0 V	1 4040 0 1000	100 0 1 00 0		4.0	
J03133 + 047	03:13:22.99 + 04:46:29.4	M5.0 V	-1.4349 ± 0.1262	102.0 ± 30.6	Irw10		
J03167 + 389	03:16:46.13 + 38:55:27.4	M3.5 V	0.0 ± 0.2	63.18	Har11		
J03181 + 382	03:18:07.42 + 38:15:08.2	M1.5 V	0.43			2.53	
J03186 + 326	03:18:38.31 + 32:39:57.1	M0.0 V	0.47			4.0	
J03213 + 799	03:21:21.76 + 79:58:02.2	M2.0 V	0.34			4.0	
J03224 + 271	03:22:28.12 + 27:09:21 9	M0.0 V	0.49	15.32	Har11		
J03242 + 237	$03:24:12.81 + 23\cdot 46\cdot 19.3$	M2.0 V	0.33	20.63	Har10		
$J03267 \pm 102$	$03.26.44$ 96 $\pm 10.14.40$ 2	M4.5 V	_4 02	0.45	Har10	21.0+0.6	
102270 + 072	$03.20.44.30 \pm 07.02.000$	M10 V	-1.02	0.40	U11	21.3 ± 0.0	
1020212+273	03:27:14.33 + 27:23:08.8	IVII.U V	-0.5	9.09	narii		
J03284 + 352	03:28:29.22 + 35:15:19.9	M2.0 V	0.46	26.41	Harll		
J03288 + 264	03:28:49.58 + 26:29:12.2	M3.0 V	-1.8	3.23	Har11		
J03366 + 034	03:36:40.84 + 03:29:19.5	M4.5 V	-4.53	0.33	Kir12		
$J03372 \pm 691$	$03.37.14\ 08\ \pm 69.10.49\ 8$	M3 5 V	-7 43	0.77	$Irw \cap Q^k$		
100055 1501	00.05.114.00 +09.10.49.0	110.0 V	- + + 0.4	10.00 0.00	11 1 00		
J03375 + 178N	03:37:33.32 + 17:51:14.6	M2.0 V	$-1.4^{+0.4}_{-0.2}$	16.36 ± 0.02	$Har10^{m}$		
$J03375 \pm 1788$	$03:37:33.87 \pm 17.51.005$	M3.5 V	$-6.8^{+0.6}$	0.48	Har10		
109497 1400		M1 0 M	-0.5	0.10	110110		
J03437 + 166	03:43:45.22 + 16:40:02.7	M1.0 V	0.46			3.7	
J03445 + 349	03:44:30.94 + 34:58:23.7	M0.0 V	0.43	13.56	Har11		
J03463 + 262	03:46:20.12 + 26:12:56.0	M0.0 V	0.41			1.8	
J03473-019	03:47:23 33 -01.58.19 5	M3.5 V	$-37^{+0.4}$	3.88	Kir19		
100450-010	00.47 50.00 -01.00.10.0	1.10.0 V	-0.2	0.00			
J03479 + 027	03:47:58.09 + 02:47:16.2	M0.5 V	0.51			2.93	
J03510-008	03:51:00.05 -00:52:45.3	M6.0 V	-6.86			6.5	
J03526 + 170	03:52:41.69 + 17:01:05.7	M4.5 V	0.01 ± 0.01	78.8 ± 7.9	Irw10		
$J03548 \pm 163$	$03.54.53\ 20\ \pm 16.18.56\ 4$	$M4 \cap V$	$-8.6^{+0.7}$			12.5	
0000-10-100	10.10.100.4		-0.4			12.0	
J03565 + 319	03:56:33.08 + 31:57:24.8	M3.5 V	$-4.7^{+0.0}_{-0.3}$	5.85	Har11		
J03567 + 039	03:56:47.39 + 53:33:36.9	M1.5 V	-2.2 ± 0.2			4.0	
103574-011	03.57.28 92 -01.09.23 4	M2.0 V	-2.2+0.2			10.0	
104056 1057	04.05.29 20 105.44.40 2	M2 = V	-2.21 U.2	1 46	 Ki-10	10.0	
JU4000+057	04:00:36.89 + 05:44:40.8	1013.3 V	-0.0	1.40	nir12		
JU4086+336	04:08:37.43 + 33:38:13.4	1V10.5 V	0.48			2.35	
J04123 + 162	04:12:21.73 + 16:15:03.3	M3.5 V	-2.5 ± 0.3			15.0	
$_{\rm J04148+277}$	04:14:53.49 + 27:45:28.4	M3.5 V	-0.77	17.57	Har11		<u></u>
	C	ontinúa en	la siguiente página	-	-	-	-

 Tabla A.2: Datos Generales del catálogo de CARMENCITA.

Karmn	RA-DE	T. stp.	$pEW(H\alpha)$	P.	Refs.	$v \sin i$	$\log(R'_{HK})$
	(J2000)	•	[Å]	[d]		$[ms^{-1}]$	
J04153-076	04:15:21.73 -07:39:17.4	M4.5 V	$-5.0^{+0.4}_{-0.5}$			5.5	
J04199+364 J04252+172	04:19:59.64 + 36:29:11.3 04:25:13.53 + 17:16:05.6	M1.5 V M3.5 V	0.51 -7 0+ 0 4	30.64	Harll	11.5	
J04304+398	04:30:25.27 + 39:51:00.1	M4.5 V	-4.0	0.72 ± 0.01	Irw10		
J04310 + 367	04:31:00.10 + 36:47:54.8	M3.0 V	$-3.2^{+0.4}_{-0.2}$	13.26	Har11		
J04311+589	04:31:11.48 +58:58:37.6	M4.0 V	0.38			2.0	
J04313+241 I04250+086	04:31:23.82 + 24:10:52.9 04:25:02.56 + 08:20:20.5	M4.5 V M1.0 V	-9.5 - 0.5		 Kir19	16.3	
J04352-161	04:35:16.13 - 16:06:57.5	M7.0 V	-2.19 ± 0.20			12.0 ± 3.0	
J04376-024	04:37:37.46 -02:29:28.2	M1.1 V	-1.79 ± 0.20	6.1	$Mes10^{o}$	6.5	
J04376-110 J04382+282	04:37:41.88 - 11:02:19.8 04:38:12.56 + 28:13:00.1	M1.5 V M4.0 V	0.45 ± 0.01 -4 17	0.34	 Har11	2.5	
J04393+335	04:39:23.20 + 33:31:49.4	M4.0 V	$-11.2^{+0.7}$	0.89	Har11		
J04403-055	04:40:23.25 -05:30:08.3	M6.0 V	-19.11 ± 0.21			$19.6 \pm \ 2.0$	
J04413 + 327	04:41:23.88 + 32:42:22.8	M4.0 V	$-0.4^{+0.2}_{-0.1}$	6.52	Har11		
J04429+189 I04480+170	04:42:55.81 + 18:57:28.5 04:48:00.87 + 17:03:21.6	M2.0 V M0.5 V	0.4	38.92	Kir07		
J04494+484	04:49:29.47 + 48:28:45.9	M4.0 V	-5.5 ± 0.5	2.49	Har11		
J04520+064	04:52:05.73 + 06:28:35.6	M3.5 V	0.31			2.5	
J04538-177 104559±046	04:53:49.95 - 17:46:23.5 $04:55:54.46 \pm 04:40:16.4$	M2.0 V M2.0 V	0.372 3 3 $+0.3$			2.5	
J04587 + 509	04:58:45.99 + 50:56:37.9	M0.5 V	-0.2 0.45	30.47	Har11	4.0	
J04595 + 017	04:59:34.83 + 01:47:00.7	M0.0 V	-1.65 ± 0.14	4.41	Kir12	$8.7\pm~0.9$	-4.08 ± 0.15
J05019+099	05:01:58.81 + 09:58:58.8	M4.0 V	-6.13	6.43	Kir12		
J05054+051 J05062+046	$05.06.12 \ 93 \ \pm 04.39.27 \ 2$	M4.0 V	$-10.0^{+0.6}$	0.89	Kir12	4.0± 5.2 26.0	-4.811 0.148
J05068-215E	05:06:49.47 -21:35:03.8	M1.5 V	-1.94 ± 0.15	13.3	Kir07	5.3	
J05068-215W	05:06:49.92 - 21:35:09.2	M3.5 V	-5.48 ± 0.57			5.3	
J05078+179 I05103+488	05:07:49.24 + 17:58:58.4 05:10:22.08 + 48:50:32.7	M3.0 V M2.5 V	0.39	32.69	 Harll	3.0	
J05127 + 196	05:12:42.23 + 19:39:56.6	M2.0 V	0.21			2.5	
J05280+096	05:28:00.15 + 09:38:38.3	M3.5 V	0.44			4.0	
$J05282 \pm 029$ J05314 - 036	$05:28:14.60 + 02:58:14.3 \\ 05:31:27.35 - 03:40:35.7$	M3.0 V M1.5 V	0.3 0.0 ± 0.3	33.61	 Kir07	3.0	
J05322 + 098	05:32:14.67 + 09:49:15.0	M3.5 V	-1.47	7.59	Shk10	10.0	
J05337 + 019 J05241 + 512	05:33:44.81 + 01:56:43.4	M2.5 V M0.5 V	-4.98		 Hor11	10.0	
J05341+512 J05341+475	05:34:08.70 + 51:12:50.6 05:34:10.64 + 47:32:03.3	M0.5 V M2.5 V	-1.02	12.35	Har11		
J05342 + 103N	05:34:15.14 + 10:19:14.2	M3.0 V	0.0 ± 0.2			4.0	
J05348 + 138 I05360 - 076	05:34:52.12 + 13:52:47.2 05:36:00.08 - 07:38:58.1	M3.5 V M4.0 V	0.31			2.5	
J05365+113	05:36:30.99 + 11:19:40.2	M0.0 V	0.02	10.04	Kir12	4.0	
J05402+126	05:40:16.09 + 12:39:00.8	M1.0 V	-2.07	1.58	Kir12		
J05415+534 J05421+124	05:41:30.73 + 53:29:23.9 05:42:08.98 + 12:29:25.3	M1.0 V M3.5 V	0.0 ± 0.2 -0.5 ± 0.3			2.5	
J05596 + 585	05:59:37.75 + 58:35:35.1	M0.5 V	0.0 ± 0.3			2.6	
J06000+027	06:00:03.51 + 02:42:23.6	M4.0 V	-0.59	1.81 ± 0.02	Irw10	7.4	
106024 ± 498	06:01:11.07 + 39:35:50.8 06:02:29 18 + 49:51:56 2	M5.0 V	$-0.6^{+0.2}$	99.6 ± 10.0	 Irw10	43 ± 12	
J06071+335	06:07:11.79 + 33:32:37.3	M2.5 V	0.59	45.49	Har11	4.0 ± 1.2	
J06103 + 821	06:10:19.78 + 82:06:25.7	M2.0 V	0.62			2.5	
J06105-218 $I06171\pm751$	06:10:34.62 - 21:51:52.2 06:18:07 - 30 + 75:06:03 - 3	M0.5 V M2.0 V	0.499 ± 0.014	0.54	 Kir13	2.63	
J06218-227	06:21:53.85 - 22:43:24.2	M1.0 V	0.604	17.29	$Koe02^e$		
J06246+234	06:24:41.32 + 23:25:58.6	M4.0 V	0.0 ± 0.4			3.1	
J06293-028 J06318+414	06:29:23.39 - 02:48:50.0 06:31:50.74 + 41:29:45.9	M4.5 V M5.0 V	-3.99 -9.26			5.4 39.6	
J06322+378	06:32:15.06 + 37:48:12.8	M1.5 V	0.24	18.21	Har11		
J06467+159	06:46:45.73 + 15:57:42.2	M1.0 V	-0.61	5.08	Kir12	Kir12	
J06548+352 J06579+623	06:54:49.03 + 33:16:03.9 06:57:57.04 + 62:19:19.7	M3.0 V M4.5 V	0.25 ± 0.03 -1.24	54.2 ± 5.4	Irw10	3.7	
J07039 + 527	07:03:55.65 + 52:42:07.6	M5.0 V	0.48			$4.7\pm~0.6$	
J07100+385 107121+522	07:10:01.80 + 38:31:45.8 07:12:11.39 + 52:16:24.8	M4.5 V M1.0 V	-0.77	5.59	Har11	6.3 3.2	
J07121+322 J07181+392	07:18:08.19 + 39:16:29.5	M0.0 V	0.45	34.87	Har11		
J07274+052	07:27:24.50 + 05:13:32.9	M4.0 V	-0.5 ± 0.2			2.5	
J07287-032 J07295+359	07:28:45.41 - 03:17:52.4 07:29:31.09 + 35:56:00.4	M3.0 V M1.5 V	$0.405 \\ -1.92$			$2.5 \\ 15.0$	
J07310+460	07:31:01.29 + 46:00:26.6	M4.0 V	$-9.5^{+0.6}_{-0.5}$	1.33	Har11		
J07319+362N	07:31:57.35 + 36:13:47.8	M4.0 V	$-2.4^{+0.3}_{-0.2}$			4.0	
J07319 + 362S	07:31:57.74 + 36:13:10.2	M2.5 V	$-2.0^{+0.6}_{-0.2}$			4.8	
J07320 + 686	07:32:02.04 + 68:37:15.7	M1.0 V	0.551			2.7	
J07320+173W $I07342\pm009$	07:32:02.92 + 17:19:10.3 $07:34:17.58 \pm 00:59:09.3$	M0.0 V M2.5 V	0.52	13.29	Har11	 3 0	
J07344+629	07:34:17:38 + 00:39:09:3 07:34:27.49 + 62:56:29.6	M0.5 V	0.23			2.5	
J07346 + 318	07:34:37.46 + 31:52:10.2	M1.0 V	-1.51	0.81	$Pla60^{a}$		
J07361-031	07:36:07.08 -03:06:38.5	M1.0 V	$-1.0^{+0.3}_{-0.2}$	12.16	Kir12		
J07364+070 J07366+440	$07:36:25.13 + 07:04:43.2 \\ 07:36:39.28 + 44:04:48 9$	M5.0 V M3.0 V	-3.55 0.0 ± 0.4	50.80	Har11	7.9	
J07384 + 240	07:38:29.52 + 24:00:08.8	M3.5 V	-4.08	3.87	Har11		
J07386-212	07:38:40.89 -21:13:27.6	M3.0 V	0.179			2.5	
J07446+035 J07482+203	07:44:40.18 + 03:33:09.0 07:48:16.17 + 20:22:07.4	M4.5 V M1.0 V	-6.31 ± 0.78 0.36	2.78	Chu74°	4.5 1.0	
J07523+162	07:52:23.90 + 16:12:15.7	M6.0 V	$-25.4^{+1.4}$			9.0	
J07558+833	07:55:53.97 +83:23:05.0	M3.5 V	$-5.2^{+0.6}$	1.11 ± 0.02	Irw10		
J07582+413	07:58:12.70 + 41:18:13.5	M3.5 V	$0.52^{-0.2}$			2.0	
J08068+367	08:06:48.42 + 36:45:39.0	M3.0 V	0.38	74.40	Har11		
J08069+422	08:06:55.32 + 42:17:33.4	M4.0 V	-2.5 + 0.4	8.81	Has11		
JU8082+211S	08:08:13.59 + 21:06:09.4	M3.0 V	$-3.7^{+0.3}_{-0.5}$		 Ца-11	35.0	• • •
J08009+328 J08119+087	08:11:57.58 + 08:46:22.1	M4.5 V	-4.7	ə.ə <i>i</i>		3.0 ± 1.7	

Continúa en la siguiente página

Karmn	RA-DE (J2000)	T. stp.	$pEW(H\alpha)$ $[\mathring{A}]$	P. [d]	Refs.	$v \sin i$ $[ms^{-1}]$	$\log(R'_{HK})$
J08161+013	08:16:07.98 + 01:18:09.2	M2.0 V	0.0 ± 0.3			2.5	
J08178+311	08:17:51.30 + 31:07:45.6	M1.0 V	0.44	0.97	Har11		
J08298+267	08:29:49.50 + 26:46:34.8	M6.5 V	-3.063 ± 0.216			8.1 ± 1.1	
J08316+193N	08:31:37.44 + 19:23:49.5	M4.0 V	-4.64		 D. 100d	6.5	
108316 + 1935 108517 + 181	08:31:37.60 + 19:23:39.6	M3.5 V M1 5 V	-5.31	2.77	Del99~		
J08517+181	08:51:45.87 +18:07:29.9	M1.5 V	0.48			3.8	
J08526+283	08:52:40.85 + 28:18:58.9	M4.5 V	-0.7 - 0.3			2.5	
J08536-034	08:53:36.20 -03:29:32.1	M9.0 V	-8.087 ± 1.066			11.5	
J08570+116	08:57:04.68 + 11:38:49.1	MI.0 V MG 0 V	0.39			3.05	
100005 465	09:00:23.59 + 21:50:05.4 00:00:22.54 + 46:25:11.8	MAE V	-10.0± 0.8			20.0 ± 0.0	
100028 ± 680	$09.00.32.34 \pm 40.33.11.8$ $09.02.52.85 \pm 68.03.46.4$	M4.5 V	-0.33			4.0 ± 0.7	
109115 ± 466	$09.11.30\ 85\ +46.37.01\ 4$	M0.5 V	0.49			4.0	
J09143 + 526	09:14:22.98 + 52:41:12.5	M0.0 V	0.0 ± 0.3			2.9 ± 1.2	-4.652 ± 0.166
J09144 + 526	09:14:24.86 + 52:41:11.8	M0.0 V	0.0 ± 0.3			3.21	1.0021 0.100
J09177 + 462	09:17:44.73 + 46:12:24.7	M2.5 V	-2.89	0.56	Har11	0.21	
J09193 + 620	09:19:22.92 + 62:03:17.1	M0.0 V	-1.53	20.2	Shk10		
J09218 + 435	09:21:49.11 + 43:30:28.5	M4.5 V	-2.01	28.78	Har11		
J09228 + 467	09:22:51.66 + 46:47:00.8	M1.0 V	0.35	16.61	Har11		
J09300 + 396	09:30:01.67 + 39:37:24.0	M2.5 V	0.72	46.02	Har11		
J09307 + 003	09:30:44.58 + 00:19:21.4	M3.5 V	0.55			2.5	
J09319 + 363	09:31:56.33 + 36:19:12.9	M0.0 V	0.43			2.5	
J09360-216	09:36:01.61 - 21:39:37.1	M2.5 V	0.317			2.5	
J09362 + 375	09:36:15.93 + 37:31:45.7	M0.5 V	$-0.9^{+0.2}$			6.0 ± 2.0	
J09411 + 132	09:41:10.33 + 13:12:34.4	M1.5 V	0.39			1.95	
J09423 + 559	09:42:23.28 + 55:59:01.6	M3.5 V	0.42	72.8 ± 7.3	Irw10		
J09428 + 700	09:42:51.82 + 70:02:22.2	M3.0 V	-0.5			2.5	
J09439 + 269	09:43:55.63 + 26:58:08.6	M3.5 V	0.37			4.0	
J08468 + 760	09:46:48.45 + 76:02:38.8	M1.5 V	0.56			1.0	
J09511-123	09:51:09.64 -12:19:47.8	M0.5 V	0.447			3.0	
J09531-036	09:53:11.78 -03:41:24.0	M2.0 V	0.383			4.0	
J09539 + 209	09:53:55.23 + 20:56:46.0	M4.5 V	-4.36			16.5 ± 0.4	
J09561 + 627	09:56:08.69 + 62:47:18.6	M0.0 V	0.56			2.5	
J09593 + 438E	09:59:18.80 + 43:50:25.6	M3.5 V	-15.49	0.76	Har11		
J10023 + 480	10:02:21.84 + 48:05:20.9	M1.0 V	0.75			2.25	
J10043 + 503	10:04:21.49 + 50:23:13.6	M2.5 V	-3.76	1.31	Kir13	20.0 ± 5.0	
J10120-026	10:12:04.66 -02:41:04.5	M2.0 V	0.0 ± 0.3			4.0	
J10122-037	10:12:17.69 -03:44:44.1	M0.5 V	0.302	21.56	Kir12	2.9	• • •
J10143+210	10:14:19.19 + 21:04:29.8	M0.5 V	-0.91	7.86	Kir12	8.0 ± 1.0	-3.955 ± 0.175
J10167-119	10:16:46.00 -11:57:41.3	M3.0 V	0.365			4.0	
J10196 + 198	10:19:36.35 + 19:52:12.2	M3.0 V	$-4.1^{+0.3}_{-0.4}$	2.23	$Hun12^{u}$	3.0	-3.790 ± 0.063
J10238 + 438	10:23:51.85 + 43:53:33.2	M5.0 V	-5.1 ± 0.5	60.751	Har11		
J10240 + 366	10:24:05.07 + 36:39:32.6	M3.5 V	$-1.9^{+0.2}$	2.17	Har11		
J10251-102	10:25:10.88 -10:13:43.4	M1.0 V	0.411			2.46	
J10289 + 008	10:28:55.55 + 00:50:27.5	M2.0 V	0.297			1.5	
J10384 + 485	10:38:29.81 + 48:31:44.9	M3.0 V	-3.54	27.82	Har11		
J10396-069	10:39:40.61 -06:55:25.6	M2.5 V	0.355			4.0	
J10416 + 376	10:41:38.10 + 37:36:39.8	M4.5 V	0.48			4.1 ± 0.7	
J10482-113	10:48:12.58 -11:20:08.2	M6.5 V	-3.049 ± 0.315			3.0	
J10497 + 355	10:49:45.61 + 35:32:51.5	M4.5 V	0.68			4.0	
J10508 + 068	10:50:52.01 + 06:48:29.3	M4.0 V	0.0 ± 0.4			2.5	
J10513 + 361	10:51:20.60 + 36:07:25.6	M3.0 V	-4.55	3.78	Har11		
J10520 + 139	10:52:04.41 + 13:59:51.0	M3.5 V	0.18	96.8 ± 9.7	Irw10		
J10522 + 059	10:52:14.23 + 05:55:09.9	M5.0 V	-14.47			19.1 ± 0.2	
J11000+228	11:00:04.32 + 22:49:59.3	M2.5 V	0.52			2.5	
J11026+219	11:02:38.33 + 21:58:01.7	M2.0 V	-0.04			2.5	
J11031+366	11:03:10.00 + 36:39:08.5	M3.5 V	-7.83	2.06	Harll		
J11033+359	11:03:20.24 + 35:58:11.8	M0.5 V	0.0 ± 0.3	48.0	Kir07	2.5	
J11042+400	11:04:15.91 + 40:00:16.6	MU.0 V	0.53	8.92	Harll		
J11054+435	11:05:29.03 + 43:31:35.7	M11.0 V	0.0 ± 0.3			2.5	
J11055 + 435	11:05:31.33 + 43:31:17.1	M5.5 V	-10.2 ± 0.9			7.7 ± 1.7	
J11055 + 450	11:05:33.68 + 45:00:31.7	M0.0 V	0.47	34.44	Har11		
J11075 + 437	11:07:32.08 + 43:45:56.4	M3.0 V	$-2.9^{0.4}$	29.14	Har11		
J11110 + 304	11:11:02.54 + 30:26:41.3	M2.0 V	0.49			2.5	
J11118 + 335	11:11:51.76 + 33:32:11.2	M3.5 V	-2.95	7.77	Har11		
J11154 + 410	11:15:26.59 + 41:05:16.3	M3.5 V	0.46	63.19	Har11		
J11159+553	11:15:54.04 + 55:19:50.6	M0.5 V	-1.7			30.0	
J11200+658	11:20:05.27 + 65:50:47.1	M0.0 V	0.47			2.5	
$J11237 \pm 085$	11:23:44.56 + 08:33:48.4	M0.5 V	0.58			2.46	
J11240 + 381	11:24:04.35 + 38:08:10.9	M4.0 V	$-6.9^{+0.4}_{-0.3}$	0.48	Har11		
J11266 + 379	11:26:37.57 + 37:56:23.8	M2.0 V	0.57	21.85	Har11		
J11317 + 226	11:31:43.39 + 22:40:01.6	M0.5 V	0.57			0.46	
J11417 + 427	11:41:44.72 + 42:45:07.3	M4.0 V	0.43	73.49	Har11	2.5	
J11421 + 267	11:42:10.96 + 26:42:25.1	M2.5 V	0.0 ± 0.3	2.64	$Wan11^{s}$	2.5	
J11467 - 140	11:46:42.82 - 14:00:50.5	M3.0 V	0.324			3.0	
J11476 + 002	11:47:40.74 + 00:15:20.2	M4.0 V	-3.43	11.60	Kir12		
J11476+786	11:47:41.44 + 78:41:28.3	M3.5 V	0.53			2.5	
J11477+008	11:47:44.40 + 00:48:16.4	M4.0 V	0.63	100 0 1		2.5	
J11509 + 483	11:50:57.88 + 48:22:39.6	M4.5 V	0.55	132.0 ± 39.6	Irw10	4.1	
$J_{11511} + 352$	11:51:07.37 + 35:16:18.9	M1.5 V	0.0 ± 0.3			2.47	
J11519+075	11:51:56.81 + 07:31:26.2	M2.5 V	-1.55	2.29	Kır12		
J11551+009	11:55:07.21 + 00:58:25.7	MD 0 M	0.39			2.19	
J11575+118	11:57:32.78 + 11:49:39.8	M2.0 V	0.48		 T 10	2.31	
J12054+695	12:05:29.75 + 69:32:22.7	M4.0 V	0.41	96.2 ± 9.6	Irw10	 E 4 L 3 O	4.071.0.01
J12123+544S	12:12:20.85 + 54:29:08.7	M0.0 V	0.54			5.4 ± 1.0	-4.97 ± 0.04
J12142+006	12:14:16.54 + 00:37:26.3	M5.0 V	-3.88			5.2	
J12189+111	12:18:59.40 + 11:07:33.9	M5.0 V	-5.784 ± 0.401	0.49 ± 0.01	Irw10	9.2 ± 1.9	
J12194+283	12:19:24.07 + 28:22:56.6	M0.0 V	0.5			2.8 ± 0.4	-4.776 ± 0.182
119904 ± 005	12:20:25.51 + 00:35:01.4	M0.0 V	0.39			3.0	
112204+003	12:23:53.54 + 12:34:49.2	M0.0 V	0.82			2.4	
J12238+125	10.04 80.10 10.10	A A / T T T	0.00			2.5	
J12238+125 J12248-182	12:24:52.43 -18:14:30.3	M2.0 V	0.28			00.01.0.00	
J12204+003 J12238+125 J12248-182 J12274+374	12:24:52.43 -18:14:30.3 12:27:29.45 +37:26:33.2	M2.0 V M1.5 V M2.5 V	0.28 0.47			23.9 ± 2.69	
$\begin{array}{c} 312204 + 003\\ J12238 + 125\\ J12248 - 182\\ J12274 + 374\\ J12289 + 084\\ J12209 + 417\end{array}$	$\begin{array}{c} 12:24:52.43 & -18:14:30.3 \\ 12:27:29.45 & +37:26:33.2 \\ 12:28:57.60 & +08:25:31.6 \\ 12:20:02.00 & +41.42.40.7 \end{array}$	M2.0 V M1.5 V M3.5 V	$0.28 \\ 0.47 \\ 0.46 \\ 1.05$	· · · · · · · · · · · · · · · · · · ·	· · · · · · ·	23.9 ± 2.69 1.58	

Karmn	RA-DE	T. stp.	$pEW(H\alpha)$	Р.	Refs.	$v \sin i$	$\log(R'_{HK})$
	(J2000)		[Å]	[d]		$[ms^{-1}]$	O(HK)
J12199+364	12:29:55.03 + 36:26:42.1	M1.0 V	0.48			20.33 ± 3.64	
J12350+098 $I12388\pm116$	$12:35:00.70 \pm 09:49:42.5$ $12:38:52.42 \pm 11:41:46.2$	M2.5 V M3.0 V	0.52			3.0	
J12388+110 J12479+097	12:38:52:42 + 11:41:40:2 12:47:56.64 + 09:45:05.0	M3.5 V	0.61			2.5	
J12490 + 661	12:49:02.73 + 66:06:36.6	M3.0 V	-0.94			10.0	
J12576 + 352E	12:57:40.30 + 35:13:30.6	M1.5 V	-1.05	3.17	Kir07	8.4	
J13005+056	13:00:33.51 + 05:41:08.1	M4.5 V	-4.149 ± 0.343	0.6 ± 0.02	Irw10	16.8	
J13007+123 I13054+371	13:00:46.66 + 12:22:32.6 13:05:29.85 + 37:08:10.7	M2.0 V M2.5 V	-1.96	2.89	Kir12 Har11	9.75	
J13095+289	$13.09.34\ 95\ +28.59.06\ 6$	M4.0 V	-4 64	0.22	$Gia12^t$		
J13143+133	13:14:20, 39 + 13:20:01, 2	M6.0 V	$-16.9^{+1.4}$	0.22	01012	45.0	
$J13168 \pm 170$	$13:16:51.56 \pm 17:01:00.1$	M1.0 V	0.0 ± 0.3			2.8 ± 0.6	-4.548 ± 0.085
J13179 + 362	13:17:58.39 + 36:17:57.4	M1.0 V	0.0 ± 0.3	50.07	Har11		
J13195 + 351W	13:19:33.56 + 35:06:37.3	M0.5 V	0.48			4.0	
J13196 + 333 I12200 + 242	13:19:40.15 + 33:20:47.8 12:20.57.07 + 24:16:44.7	M1.5 V	0.43			2.32	-4.2 ± 0.04
113209 ± 342 113215 ± 037	13:20:37.97 + 34:10:44.7 $13:21:35.24 \pm 03:45:55.2$	M1.0 V	0.45			1.78	
J13283-023E	13:28:21.06 -02:21:36.5	M3.0 V	0.316			4.0	
J13299+102	13:29:59.79 + 10:22:37.6	M0.5 V	0.42			2.07	
J13317 + 292	13:31:46.67 + 29:16:36.9	M4.0 V	-7.51	0.27	Nor07	55.5	
J13370+481 $I13304\pm461$	13:37:40.44 + 48:07:54.2 13:39:24.10 + 46:11:11.5	M4.0 V M1.0 V	-4.55 0.0 \pm 0.3	0.56	Harll	0.85	
J13427 + 332	13:42:43.29 + 33:17:25.5	M3.5 V	0.62			4.0	
J13450 + 176	13:45:05.03 + 17:47:10.5	M1.0 V	-0.44			2.0	
J13457 + 148	13:45:43.54 + 14:53:31.8	M1.5 V	0.456			2.0	
J13458-179	13:45:50.75 -17:58:04.8	M3.5 V	0.241			2.5	
J13591-198 J14010-026	13:39:10.46 -19:30:03.5	M4.0 V M1.0 V	-4.0			2.5	
J14023+136	14:02:19.61 + 13:41:22.9	M0.5 V	0.61			4.0	
J14025 + 463N	14:02:33.24 + 46:20:26.6	M0.5 V	0.56			3.6	
J14025+463S	14:02:33.13 + 46:20:23.9	M0.5 V	0.32			3.6	
J14082 + 805 I14200 + 200	14:08:12.98 + 80:35:50.0 14:20:04.60 + 20:02:01.5	M1.0 V M2.5 V	0.56	0.27	 Nor07	2.09	
J14200+390 J14257+236W	14.20.04.09 + 39.03.01.3 14.25.43.49 + 23.37.01.1	M0.0 V	-3.93	0.37	10107	4.0	
J14257 + 236E	14:25:46.67 + 23:37:13.3	M0.5 V	0.539			4.0	
J14259 + 142	14:25:55.94 + 14:12:10.2	M0.0 V	-3.01	4.34	$Ber10^{l}$		
J14294 + 155	14:29:29.72 + 15:31:57.9	M2.0 V	0.52			0.8 ± 0.8	-4.859 ± 0.198
J14306+597	14:30:37.88 + 59:43:24.9	M6.5 V	-3.35			18.7	
J14310-122 J14342-125	14:31:01.20 -12:17:45.2	M3.5 V M4.0 V	0.284 0.206 ± 0.009			2.5	
J14388+422	14:38:51.87 + 42:13:44.5	M1.5 V	0.38	39.26	Har11		
J14423 + 660	14:42:21.65 + 66:03:20.8	M2.0 V	0.42			2.5	
J14538 + 235	14:53:51.44 + 23:33:20.8	M3.5 V	0.25			4.0	
J14544+355 $I14544\pm161$	14:54:27.91 + 35:32:57.0 14:54:29.23 + 16:06:04.0	M3.5 V M1.0 V	0.3 0.83 \pm 0.15	13.68	 Kir07	4.0 3.5 ± 0.7	1.225 ± 0.144
J14549+411	14:54:23:23 + 10:00:04:0 14:54:54.97 + 41:08:48.1	M4.5 V	-7.87	6.11	Har11	3.51 0.7	-4.225 0.144
J14574-214	14:57:27.88 -21:24:52.7	M1.0 V	0.86			2.5	
J14575 + 313	14:57:32.28 + 31:23:44.6	M2.0 V	-0.6			2.5	
J14578 + 566	14:57:53.75 + 56:39:24.2	M5.5 V	-4.74			13.6	
J15009+454 J15060+453	15:00:55.57 + 45:25:34.3 15:06:02.84 + 45:21:52.3	M0.5 V M1.5 V	0.48 0.47	44.83	Harl1	3.0 ± 2.3	-4.788 ± 0.185
J15095+031	15:09:35.59 + 03:10:00.8	M3.0 V	0.48			4.0	
J15151+333	15:15:07.06 + 33:18:03.3	M2.0 V	0.0 ± 0.3			26.6 ± 4.2	
J15218+209	15:21:52.92 + 20:58:39.5	M1.5 V	-2.25	0.37	Nor07	6.5	
J15319+288 I15368+375	15:31:54.27 + 28:51:09.6 15:36:50.38 + 37:34:49.6	M4.5 V M0.0 V	-1.28	4.61	 Har11	3.8	
115474 ± 451	$15:47:27$ 44 $\pm 45:07:51$ 2	M4.0 V	-4.1+0.7	3.54	Har11		
115490 042	15.49.02.90 + 04.21.20.2	MOE V	-4.1 - 0.5	1.70	1/ar11		
115460 ± 043 115555 ± 352	$15:46:02.80 \pm 04:21:39.3$ $15:55:31.78 \pm 35:12:02.9$	M4.5 V	-4.7-0.2 5.72	1.79	Har11	21.0 ± 0.4	
J15569+376	15:56:58.24 + 37:38:13.8	M2.0 V	-5.2	0.31	Har11	21.5 ± 0.4	
J15583 + 354	15:58:18.83 + 35:24:23.7	M3.5 V	0.4	57.22	Har11		
J15587 + 346	15:58:45.68 + 34:48:54.9	M3.5 V	0.65	59.77	Har11		
J15598-082	15:59:53.37 -08:15:11.4	M1.0 V	0.314 ± 0.016			3.0	
J16028 + 203 J16066 + 083	$16.06.41$ 18 $\pm 08.23.18$ 2	M0.5 V	0.41			3.53	
J16090+529	16:09:03.09 + 52:56:37.9	M0.0 V	0.45			4.0	
J16167 + 672S	16:16:42.80 + 67:14:19.7	M1.0 V	0.0 ± 0.4			$4.2\pm\ 2.0$	-4.715 ± 0.164
J16167+672N	16:16:45.37 + 67:15:22.4	M3.0 V	0.4			2.5	2 26 - 0.04
116170+552 116220 ± 228	16:17:05.37 + 55:16:09.4 16:22:01.19 + 22:50:21.7	M5.6 V M1.5 V	-1.50	1.37	 Nor07	17.2 ± 0.9	-3.30 ± 0.04
J16241 + 483	16:24:09.13 + 48:21:11.3	M2.5 V	0.41			2.9	
J16254 + 543	16:25:24.59 + 54:18:14.9	M1.5 V	$0.0\pm~0.3$			2.5	
J16303-126	16:30:18.09 -12:39:43.4	M3.5 V	0.234	: : :		1.5	
J16313 + 408	16:31:18.79 + 40:51:51.6	M5.0 V	-11.55	0.51	Harll		
J10343+571 $J16354\pm350$	10:34:20.41 + 57:09:43.9 $16:35:27.41 \pm 35:00.57.7$	M4.5 V M4.0 V	-1.82	1.27	Dev08 ^j Nor07	27.5 15.8	
J16360+088	16:36:05.63 + 08:48:49.2	M4.0 V	-1.39	6.41 ± 0.06	Irw10		
J16401 + 007	16:40:06.00 + 00:42:18.8	M4.0 V	-3.82	0.31 ± 0.01	Irw10		
J16403+676	16:40:20.68 + 67:36:04.7	M5.5 V	-8.24	0.38 ± 0.01	Irw10		
J16408+363	16:40:48.92 + 36:18:59.6 16:48:45.07 + 15:44:10.0	M2.0 V M1 5 V	0.47	15.96	Harll	4.0	
J16554-083N	16:55:25.27 -08.19.20 8	M3.5 V	0.457 0.258 ± 0.024			4.0 2.7	
J16554-083S	16:55:28.81 -08:20:10.3	M3.0 V	-1.89			2.9 ± 1.0	-4.19 ± 0.04
J16555-083	16:55:35.29 -08:23:40.1	M6.5 V	-4.237 ± 0.359			9.0	
J16570-043	16:57:05.71 -04:20:56.0	M3.5 V	-416	1.21	Kir12	10.7	4 979 1 0 073
J10381+257 $J16591\pm200$	10:00:00.80 + 25:44:39.2 $16:59:09.63 \pm 20:58:16.0$	M3.5 V	0.35	4 10	 Nor07	2.2(-4.0/2± 0.252
J17038+321	17:03:52.83 + 32:11:45.6	M2.0 V	-1.73	14.53	Har11		
J17052-050	17:05:13.84 -05:05:38.6	M2.0 V	$0.339 \pm \ 0.018$			5.7	
J17058+260	17:05:52.59 + 26:05:32.3	M1.5 V	0.45	35.90	Har11		
J17071+215 I17005+426	17:07:07.52 + 21:33:14.4 17:09:31 52 + 42:40:52 52	M3.0 V M2 F V	0.54			2.5	
J171093+430 J17104+279	17:10:25.46 + 27:58:40.0	M2.5 V	0.08	33.08	Har11	4.0	• • •
J17115 + 384	17:11:34.72 + 38:26:34.1	M3.5 V	0.53			2.5	
J17121 + 456	17:12:07.80 + 45:39:58.8	M3.5 V	0.47			4.0	

Continúa en la siguiente página

Karmn	RA-DE (J2000)	T. stp.	$\frac{pEW(H\alpha)}{[\mathring{A}]}$	P. [d]	Refs.	$v \sin i$ $[ms^{-1}]$	$\log(R'_{HK})$
J17158+190	17:15:50.10 +19:00:00.1	M0.5 V	0.39			4.0	
117160 ± 110 117166 ± 080	17:16:00.63 + 11:03:27.4 17:16:40.97 + 08:03:30.2	M1.0 V M2.0 V	0.65			4.0	
117183-017	17:18:21.73 - 01:46:53.6	M0.0 V	0.297			4.0	
117198 + 265	17:19:52.98 + 26:30:02.6	M4.5 V	$-8.2^{+0.8}$	20.38	Har11	6.1	
J17199 + 265	17:19:54.22 + 26:30:03.0	M3.5 V	-2.4 ± 0.2	19.81	Nor07	4.0	-3.96 ± 0.04
J17303 + 055	17:30:22.73 + 05:32:54.7	M0.0 V	0.56			7.4 ± 1.0	-4.43 ± 0.04
J17338+169	17:33:53.15 + 16:55:12.9	M5.5 V	-9.16	0.27	Nor07		
J17355+616	17:35:34.46 + 61:40:54.0	M0.5 V	0.43			3.8 ± 1.3	-4.657 ± 0.191
J17364+683 $I17378\pm185$	17:36:25.94 + 68:20:22.0 $17:37:53 3 \pm 18:35:29 5$	M3.0 V M1.0 V	0.0 ± 0.4 0.44			2.5	-5 121± 0 245
J17395 + 277N	17:39:32.23 + 27:46:36.7	M3.0 V	0.39	30.25	Har11	2.40	-0.121 _ 0.240
J17439 + 433	17:43:55.95 + 43:22:44.1	M2.5 V	0.51			2.5	
J17578 + 046	17:57:48.49 + 04:41:40.5	M4.0 V	0.0 ± 0.3	130.0	Kir07	2.5	
J17578+465	17:57:50.96 + 46:35:18.2	M3.0 V	0.0 ± 0.4	31.64	Har11	4.0	
J18042 + 359 J18051 020	18:04:17.59 + 35:57:25.9 18:05:07.56 - 02:01:52.4	M0.5 V M1.0 V	0.55	21.90	Harll	4.5	
J18051-050 J18075-159	18:07:32.93 -15:57:46.5	M4.5 V	-5.78			3.0	
J18096+318	18:09:40.71 + 31:52:12.4	M1.0 V	0.53	32.15	Har11		
J18131 + 260	18:13:06.57 + 26:01:51.9	M3.8 V	$-7.8^{+1.2}$	2.28	Har11		
J18165 + 455	18:16:31.09 + 45:33:27.6	M0.5 V	0.38	39.52	Har11	4.0	
J18180+387E	18:18:04.28 + 38:46:34.2	M3.0 V	0.49			2.5	
J18189 + 661	18:18:57.26 + 66:11:33.2	M4.5 V	-2.82			14.6	
J18195 + 420	18:19:34.57 + 42:01:37.6	M1.5 V	0.61	27.69	Har11		
J18224 + 620	18:22:27.19 + 62:03:02.5	M4.0 V	$-0.5^{+0.2}_{-0.3}$			2.3	
J18250+246	18:25:04.79 + 24:38:04.4	M0.0 V	0.54			4.0	
118319 + 406	18:31:58.40 + 40:41:10.4	M3.5 V	0.37			2.5	4 750 0 105
J18353+457 I18354⊥457	10:30:10.33 + 40:44:37.9 $18:35:27.23 \pm 45:45:40.2$	M3.0 V	0.0 ± 0.4 0.0 + 0.4			1.0 ± 0.0 6 3 + 1 7	-4.759± 0.165
J18387-144	18:38:44.75 - 14:29:25 0	M2.5 V	0.303			3.0	
J18395+301	18:39:32.13 + 30:09:55.2	M0.0 V	0.44			23.45 ± 1.2	
J18409-133	18:40:57.33 -13:22:45.6	M1.0 V	0.498			2.97	
J18411 + 247S	18:41:09.78 + 24:47:14.4	M4.5 V	-1.74			5.0	
J18419+318	18:41:59.09 + 31:49:49.8	M3.0 V	0.55			2.5	
J18427+139	18:42:44.99 + 13:54:16.8	M4.0 V	-2.26	8.07 ± 0.08	Irw10		
$J18427 \pm 596N$ $I18427 \pm 596S$	18:42:40.00 + 59:37:49.9 18:42:46.88 + 59:37:37.4	M3.0 V M3.5 V	0.0 ± 0.4 0.0 \pm 0.4			8.1 ± 1.3 2.5	-5.207 ± 0.229
$J_{18433+406}$	18:43:22.14 + 40:40:21.1	M8.0 V	-7.35			5.0	
J18451 + 063	18:45:10.27 + 06:20:15.8	M1.0 V	-0.04	16.18	Kir12		
J18507 + 479	18:50:45.21 + 47:58:19.5	M3.5 V	0.88	69.68	$McQ13^{x}$		
J18518 + 165	18:51:51.18 + 16:34:59.9	M0.0 V	0.53			4.0	
J18554+084	18:55:27.41 + 08:24:09.0	M3.0 V	-1.761 ± 0.285			7.7	-4.426 ± 0.238
$J18580 \pm 059$ $I18506 \pm 070$	18:58:00.14 + 05:54:29.7 18:50.28 60 + 07:50.14 0	M0.5 V M0.0 V	0.67			3.8 ± 2.3	-4.825 ± 0.175
$J19070 \pm 208$	$19.07.05\ 56\ \pm 20.53.16\ 8$	M2.0 V	0.0 ± 0.4			2.5	
J19072 + 208	19:07:13.20 + 20:52:37.3	M2.0 V	0.45			2.5	
J19084+322	19:08:29.96 + 32:16:52.0	M3.0 V	0.7			2.5	
J19093 + 382	19:09:19.19 + 39:12:03.7	M1.0 V	0.6	38.80	McQ13		
J19095 + 391	19:09:31.71 + 39:10:51.5	M2.0 V	0.43	38.90	McQ13		
J19122+028	19:12:14.55 + 02:53:11.2	M3.5 V	0.68			4.6	
J19140 + 193N J10160 + 051N	19:14:39.26 + 19:19:02.6 10.16.55.26 + 05.10.08.6	M3.5 V M2.5 V	-3.29	0.48	Gia12	 25	1.02 ± 0.102
110160 + 0515	19.16.57.62 + 05.00.02.2	M2.5 V	0.0 ± 0.4			2.5	-4.879 10.192
110215 425	$19.10.37.02 \pm 03.09.02.2$	M2.0 V	-9.0-1.0	15.14	 Uor11	0.5	
110210 + 261	19:21:32.10 + 42:30:32.1	MAE V	-0.33 o ±+0.7	10.14	Har11		
J19312+301	19:31:12.56 + 36:07:30.1	M4.5 V	-8.0 -0.5	1.03	Har04		
J19330+395 J10251+0849	19:33:39.41 + 39:31:37.3 10.25.06.20 + 08.27.28.0	M1.5 V M0.0 V	0.36	67.44	McQ13		
119351 ± 0845 119358 ± 413	19:35:00.29 + 08:27:38.9 $19:35:51 \ 44 + 41:19:07 \ 9$	M0.0 V	0.47	25 39	McO13	4.0	
J19395+718	19:39:32.89 + 71:52:19.2	M0.0 V	0.61	20.00		4.0	
J19457+323	19:45:49.69 + 32:23:13.2	M1.0 V	0.45			4.0	
J19511 + 464	19:51:09.31 + 46:28:59.9	M4.0 V	-7.15	0.59	Har11	22.0	
J19539 + 444W	19:53:54.43 + 44:24:54.2	M5.5 V	-4.4 ± 1.0	0.26	Har11	22.5	
J19539 + 444E	19:53:55.09 + 44:24:55.0	M5.5 V	$-5.1^{+1.0}_{-0.9}$			6.8	
J20050+544	20:05:02.28 + 54:26:03.8	M1.0 V	-0.82			12.7	
J20082+333 J20105 L065	20:08:17.86 + 33:18:12.2	M4.5 V	-4.79	1 1 9	 Ki-19	15.7	
J20103+005 J20298+096	$20.10.34.40 \pm 00.32.14.0$ $20.29.48.34 \pm 09.41.20.2$	M4.5 V	-4.39 -2.28	0.35 ± 0.01	ITTI2 Irw10	35.0	
$J_{20305+654}$	20:30:32.08 + 65:26:58.6	M2.5 V	0.32			2.5	
J20336 + 617	20:33:40.31 + 61:45:13.6	M4.0 V	0.51			4.0	
J20373 + 219	$20{:}37{:}20{.}81\ {+}21{:}56{:}52{.}5$	M0.5 V	-0.3	2.37	Har11		
J20429-189	20:42:57.09 -18:55:04.8	M1.5 V	0.482			2.34	
J20433+553 J20425 + 240	20:43:19.21 + 55:20:52.1	M5.0 V	-4.49		 Цо-11	4.5	
320433 ± 240 $J20450 \pm 444$	$20.43.34.33 \pm 24:07:40.8$ 20.45.04 03 $\pm 44.29.56.2$	M1.5 V	-2.21	0.79	marii	0.49	
J20519+691	20:51:59.91 + 69:10:07.2	M1.0 V	0.43			1.0	
J20533 + 621	20:53:19.78 + 62:09:15.8	M0.5 V	0.28			2.66	
J20586 + 342	20:58:41.92 + 34:16:27.2	M0.0 V	0.46			4.0	
J21000+400	21:00:05.29 + 40:04:13.6	M1.5 V	-1.83			7.61	
J21092-133	21:09:17.41 -13:18:08.0	M1.0 V	0.346			2.63	
J∠1185+302 191967⊥027	21:18:33.73 + 30:14:34.7 21:26:42.46 + 02:44.12.7	M1.5 V M0.0 V	-1.66			10.0 ± 2.0 1 4 ± 1.0	1.13 ± 0.04
J21296+176	$21:20:42.40 \pm 05:44:15.7$ $21:29:36.71 \pm 17:38:35.4$	M3.5 V	0.39			5.3	-4.45± 0.04
$J_{21323+245}$	21:32:21.98 + 24:33:41.9	M3.5 V	-2.58	4.74	Nor07		
J21376+016	21:37:40.19 + 01:37:137	M4.5 V	$-11.9^{+1.3}$	0.21	Kir12		
$J_{21380+277}$	21:38:00.37 + 27:43:25.5	M0.0 V	0.45			4.0	
$J_{21539+417}$	21:53:59.02 + 41:46:44.3	M0.0 V	0.632			4.0	
$J_{21584+755}$	21:58:24.51 + 75:35:20.6	M0.5 V	0.5			4.0	
$J_{21593+418}$	21:59:21.92 + 41:51:32.7	M3.0 V	0.38	77.98	Har11		
J22012+283	22:01:13.11 + 28:18:24.9	M4.0 V	-6.45	0.45	Kor10	29.4 ± 1.2	
J22018+164	22:01:49.02 + 16:28:02.7	M2.0 V	0.4				-4.74 ± 0.04
J22021+014	22:02:10.20 + 01:24:00.6 22:09:40.30 - 04:29:26.9	M25 V	0.018± 0.026 0.384			20.21± 4.94 25	
122006 076		1V10.0 V	0.304			4.0	
J22096-046 J22115+184	22:11:30.08 + 18:25:34.1	M2.0 V	0.38				

Continúa en la siguiente página

Karmn	RA-DE	T. stp.	$pEW(H\alpha)$	Р.	Refs.	$v \sin i$	$log(R'_{HK})$
	(J2000)		$[\mathring{A}]$	[d]		$[ms^{-1}]$	
J22250+356	22:25:01.74 + 35:40:07.9	M2.0 V	0.39	22.89	Har11		
J22252+594	22:25:17.06 + 59:24:49.6	M4.0 V	0.34			4.0	
J22279 + 576	22:27:59.58 + 57:41:45.3	M3.0 V	0.122			4.7 ± 1.5	-5.128 ± 0.279
$J_{22287+189}$	22:28:45.91 + 18:55:54.5	M0.0 V	0.48			4.0	
J22289-134	22:28:54.40 -13:25:17.9	M6.5 V	-1.41			7.0	
J22290 + 016	22:29:05.87 + 01:39:48.1	M0.5 V	0.52			7.0	
J22300 + 488	22:30:04.19 + 48:51:34.7	M4.5 V	$-6.1^{+0.9}_{-0.7}$	0.82	Har11		
J22330 + 093	22:33:02.25 + 09:22:41.1	M1.0 V	0.42			2.64	
J22333-096	22:33:22.65 -09:36:53.8	M3.0 V	-5.57			15.0	
J22361-008	22:36:09.67 -00:50:29.8	M0.0 V	0.534			8.0	
J22387-206N	22:38:45.31 -20:36:51.9	M3.5 V	-4.64	1.95	$Bid88^{c}$	4.68	
J22387-206S	22:38:45.60 -20:37:16.1	M1.5 V	-3.48	4.23	Kir07	7.02	
J22468 + 443	22:46:49.81 + 44:20:03.1	M3.5 V	-4.63			6.9	-3.972 ± 0.147
$J_{22518+317}$	22:51:53.49 + 31:45:15.3	M3.0 V	-3.26	1.64	Nor07	11.0	
J22532-142	22:53:16.72 -14:15:48.9	M4.0 V	0.248 ± 0.013			2.5	
J22565 + 165	22:56:34.97 + 16:33:13.0	M1.5 V	0.341 ± 0.039			9.7 ± 1.0	-4.40 ± 0.04
$J_{23028+436}$	23:02:52.51 + 43:38:15.7	M4.5 V	$-5.8^{+0.8}_{-0.9}$	0.35	Har11		
$J_{23045+667}$	23:04:30.19 + 66:45:51.8	M0.5 V	0.68			5.3	
J23051 + 452	23:05:08.71 + 45:17:31.8	M3.5 V	$-6.6^{+0.6}_{-0.4}$	1.28	Har11		
J23060+639	23:06:04.83 + 63:55:33.9	M0.0 V	-1.44	2.83	Kir13		
J23063+126	23:06:23.78 + 12:36:26.9	M0.5 V	-1.17	5.0	Shk10		
J23064-050	23:06:29.28 -05:02:28.6	M8.0 V	-6.589 ± 1.343			6.4	
J23083-154	23:08:19.54 -15:24:35.5	M0.0 V	-2.12	0.43	Kir12	70.0	
$J_{23088+065}$	23:08:52.49 + 06:33:39.9	M0.0 V	0.14			4.5 ± 1.2	
$J_{23182+462}$	23:18:17.89 + 46:17:21.4	M0.0 V	0.56	8.60	Har11		
J23216+172	23:21:37.52 + 17:17:28.5	M4.0 V	0.5			2.5	
$J_{23245+578}$	23:24:30.49 + 57:51:15.3	M1.0 V	0.39			0.52	
$J_{23256+531}$	23:25:40.17 + 53:08:05.6	M4.5 V	-2.48	24.8 ± 0.06	Irw10		
$J_{23293+414S}$	23:29:22.58 + 41:27:52.2	M4.0 V	-4.91			14.5	
J23302-203	23:30:13.41 -20:23:27.1	M3.0 V	-2.98			3.9 ± 1.2	
J23318+199E	23:31:52.09 + 19:56:14.2	M3.5 V	-4.46			12.8	
$J_{23318+199W}$	23:31:52.45 + 19:56:13.8	M4.5 V	-2.48	1.07	Nor07	24.2	
J23327-167	23:32:46.56 -16:45:08.2	M2.0 V	-2.4			7.1 ± 1.2	
$J_{23350+016}$	23:35:00.29 + 01:36:19.4	M0.0 V	0.12			4.5 ± 1.2	
$J_{23364+554}$	23:36:25.53 + 55:29:43.6	M1.5 V	0.33	1.03	Har11		
$J_{23419+441}$	23:41:54.99 + 44:10:40.8	M5.0 V	$-1.0^{+0.4}_{-0.3}$			1.2	
$J_{23431+365}$	23:43:06.29 + 36:32:13.2	M4.0 V	-0.04			2.6	
J23455-161	23:45:31.28 -16:10:19.8	M5.0 V	-4.66	3.0	$Mon06^{g}$		
$J_{23492+024}$	23:49:12.56 + 02:24:03.8	M1.0 V	0.4			2.5	-5.337 ± 0.184
$J_{23548+385}$	23:54:51.47 + 38:31:36.3	M4.0 V	-3.74	4.76	Kir13		
J23573-129W	23:57:19.35 -12:58:40.7	M4.0 V	-4.39			4.0	