TWINKLE, TWINKLE, LITTLE STAR: UNRAVELLING THE STELLAR **ATMOSPHERIC PARAMETERS OF CARMENES GTO M DWARFS** USING THE SPECTRAL SYNTHESIS TECHNIQUE

E. Marfil¹, D. Montes¹, H. M. Tabernero^{1,12}, F. J. Lázaro Barrasa¹, J. A. Caballero², J. I. González Hernández³, and the CARMENES Consortium^{1,2,3,4,5,6,7,8,9,10,11}

¹Universidad Complutense de Madrid • ²Centro de Astrobiología • ³Instituto de Astrofísica de Canarias • ⁴Institut für Astrophysik Göttingen • ⁵Institut de Ciències de l'Espai • ⁶Thüringer Landessternwarte Tautenburg • ⁷Max-Planck-Institut für Astronomie • ⁸Hamburger Sternwarte • ⁹Landessternwarte Königstuhl • ¹⁰Instituto de Astrofísica de Andalucía • ¹¹Centro Astronómico Hispano-Alemán-Calar Alto Observatory • http://carmenes.caha.es/ • ¹²Universidad de Alicante

Description Abstract. We focus on our very first results in connection with the stellar atmospheric parameter determinations (Teff, log g, and [M/H]) of M-type dwarfs observed with corneres under its GTO programme by means of the spectral synthesis technique. We also describe our three-step approach to the problem: 1 the careful selection of spectral ranges around iron and titanium atomic lines and molecular bands in three reference M-type stars: GX And (M1.0 V), Luyten's star (M3.5 V), and Teegarden's star (M7.0 V); [2] the use of BT-Settl stellar model atmospheres, the radiative transfer code **Turbospectrum** and line data from

the VALD3 database to obtain a grid of synthetic spectra to be compared with the CARMENES spectra; and [3] the Markov Chain Monte Carlo process implemented in SteParSyn code designed to derive the probability distribution functions of the stellar atmospheric parameters.

* Figure 1. From top to bottom, individual CARMENES spectra of our three reference stars GX And (M1.0 V), Luyten's star (M3.5 V) and Teegarden's star (M7.0 V), respectively.

244

Line selection stage: ~70 Fe I and Ti I lines picked over. Around each line we defined a range and a mask (see fig. 2).

Figure 2. Example of two line selections, ranges and masks (close–up view of α . and β . zones of fig. 1).

0.

7424

公 X 4 4

Spectral synthesis around the selected ranges requires careful consideration of the following aspects:

Solution Model atmospheres: We opted for BT–Settl model atmospheres (Allard et al. 2012) after trying out both MARCS and PHOENIX model atmospheres. **Radiative transfer code**: TurboSpectrum (Alvarez & Plez 1998, Plez 2012), capable of handling large atomic and molecular data at high speed. Atomic line data: VALD3, *extract all* option (Ryabchikova et al. 2015). **Molecular line data:** Mostly from B. Plez and ExoMol line lists, including: TiO SiH MgH CaH CrH FeH C₂ ZrO H₂O OH CN CO VO and their isotopes

Synthetic grid	$\mathcal{T}_{ ext{eff}}$ [K]	log g[dex]	[Fe/H][dex]
Lower limit	2600	4.00	-1.00
Upper limit	4500	5.50/6.00*	+1.00
Step	100	0.5	0.5*

 Table 1: Parameter space of our synthetic grid obtained using BT-Settl model atmospheres. *Steps and

 limits may vary slightly depending on the actual effective temperature considered.

$T_{ m eff}$ [K] log g[dex] [M/H] [dex] Lázaro Barrasa, MSc thesis, 2018 **References:** Allard et al. 2012 Alvarez & Plez 1998 Plez 2012 Blanco-Cuaresma et al. 2014 Quirrenbach et al. 2018, SPIE Gustafsson et al. 2008 Ryabchikova et al. 2015 Tabernero et al. 2018 Husser et al. 2013

Acknowledgements: This work has been partly supported by Ministerio de Educación y Formación Profesional under fellowship FPU15/01476, and by Ministerio de Ciencia, Innovación y Universidades under projects AYA2015-68012-C2-2-P, AYA2016-79425-C3-1/2-P.

