

CARMENES and stellar activity

Juan Carlos Morales cormenes Institut de Ciències de l'Espai (ICE, CSIC)

CARMENES targets

M dwarfs

Larger RV signal Smaller planets Poorly monitored

Relatively faint Stellar activity

Present and future science with CARMENES

CARMENES targets

cormenes

M dwarfs

Larger RV signal Smaller planets Poorly monitored

Relatively faint Stellar activity

20-22 February 2019, Granada

Present and future science with CARMENES

CARMENES targets

M dwarfs

Larger RV signal Smaller planets Poorly monitored

Relatively faint Stellar activity

Present and future science with CARMENES

M-dwarfs stellar activity

Active stars: M0.0-M4.5 Inactive stars: M0.0-M2.5

Inactive stars: M3.0-M4.5

- Ratio of active stars increase towards later spectral types
- Saturated regime at longer _ periods

-3

-3.5

M-dwarfs stellar activity

Active stars: M0.0-M4.5 Inactive stars: M0.0-M2.5

Inactive stars: M3.0-M4.5

- Ratio of active stars increase towards later spectral types
- Saturated regime at longer periods

-3

-3.5

M-dwarfs stellar activity

- Stellar spots cause radial velocity jitter
 RV ~ m/s → few km/s
 P ~ days → weeks
- Mimic/mask exoplanet signal

Stellar activity must be monitored!

Stellar activity indices

CARMENES channels:

- VIS: 520 960 nm
- NIR: 960 1710 nm

Activity indicators

Spectral indices:

- Ηα (6562 Å)
- NaID (5890 & 5896 Å)
- HeID3 (5876 Å)
- Call IRT (8498, 8542 & 8662 Å)
- Heļ(10830 Å)

Present and future science with CARMENES

Stellar activity indices

CARMENES channels:

- VIS: 520 960 nm
- NIR: 960 1710 nm

Activity indicators

Spectral indices:

- Ηα (6562 Å)
- NaID (5890 & 5896 Å)
- HeID3 (5876 Å)
- Call IRT (8498, 8542 & 8662 Å)
- Heļ(10830 Å)

RV parameters:

- Bisector span
- FWHM
- Contrast
- Chromatic index

20-22 February 2019, Granada

Stellar activity indices

CARMENES channels:

- VIS: 520 960 nm
- NIR: 960 1710 nm

Activity indicators

Spectral indices:

- Ηα (6562 Å)
- NaID (5890 & 5896 Å)
- HeID3 (5876 Å)
- Call IRT (8498, 8542 & 8662 Å)
- Heļ(10830 Å)

RV parameters:

- Bisector span
- FWHM
- Contrast
- Chromatic index

Present and future science with CARMENES

Stellar activity WG

WP leader: Sandra V. Jeffers (IAG)

<u>Participants:</u>

- <u>Göttingen (IAG)</u>: Erik Johnson, Ansgar Reiners, Patrick Schöfer, Denis Shulyak, Lev TalOr (now in Tel Aviv)
- <u>Hamburg (HS)</u>: Birgit Fuhrmeister, Dominik Hintz, Stefan Czesla
- <u>Heidelberg (LSW)</u>: Andreas Quirrenbach, Sabine Reffert, Sepideh Sadegi
- <u>Barcelona (ICE)</u>: David Baroch, Enrique Herrero, Marina Lafarga, Juan Carlos Morales, Ignasi Ribas
- <u>Canarias (IAC)</u>: Carlos Cardona
- <u>Madrid (UCM/CAB)</u>: Jose Caballero, Fernando Labarga, David Montes

<u>Goal:</u> Use CARMENES spectra to understand stellar activity properties and evolution.

Statistics of RV variability

Correlations between activity parameters and radial velocity (Tal-Or et al. 2018)

- 30% of stars show RV-CRX correlation, most of them negative → spots
- 20% of stars do not show RV-CRX correlation, Zeeman effect?
- No significant RV-dLW and RV-Hα correlations, but rotation periods from Hα and Ca II IRT indices (see Fuhrmeister et al. 2019)

→ more complicated relationships

Present and future science with CARMENES

Statistics of activity indices

Correlations between activity indicators (Schöfer et al. 2019)

- Photospheric band indices TiO & VO
 - Spectral type dependence
 - TiO tracing Zeeman effect (see also Shulyak et al. submitted)

Statistics of activity indices

Correlations between activity indicators (Schöfer et al. 2019)

- Photospheric band indices TiO & VO
 - Spectral type dependence
 - TiO tracing Zeeman effect (see also Shulyak et al. submitted)
- Strong correlation between $\text{H}\alpha$ and He D3 lines

Statistics of activity indices

Correlations between activity indicators (Schöfer et al. 2019)

- Photospheric band indices TiO & VO
 - Spectral type dependence
 - TiO tracing Zeeman effect (see also Shulyak et al. submitted)
- Strong correlation between $\text{H}\alpha$ and He D3 lines
- 50% of stars show rotation period in at least 1 indicator: Hα, Ca IRT and TiO bands, proxies for rotation
 - But a careful study of each star is needed to understand why
- But a careful study of each star is needed to understand why rotation signal appears on different indices for different stars

Study of chromospheric lines

Statistical analysis of line asymmetries and wings (Fuhrmeister et al. 2018)

- Line asymmetries in Hα and He I (10833 Å) common in active Mdwarfs (15-30% spectra of 28 active stars)
- Increasing towards more active stars
- Note always related with flaring events (persistence)
- Related with chromospheric evaporation and condensation
- See also Hintz et al. (2019)

Simulation/correction of activity effects:

- Several codes available: SOAP (Boisse et al. 2012, Dumusque et al. 2014), StarSim (Herrero et al. 2016, Rosich et al. in prep)
- Given a spot map, reconstruct stellar emission and predict:
 - Photometric variability
 - Radial velocity jitter
 - Astrometric jitter
 - Transit depth variations

≚ ^{0.9995}

Present and future science with CARMENES

StarSim (Herrero et al. 2016, Rosich et al. in prep)

- Different spot features cause different signals

StarSim (Herrero et al. 2016, Rosich et al. in prep)

Degenerated problem:

- Different spot distributions could fit similar photometric light curves: correlations between spot size, temperature...

20-22 February 2019, Granada

StarSim (Herrero et al. 2016, Rosich et al. in prep)

- Degenerated problem:
- Different spot distributions could fit similar photometric light curves: correlations between spot size, temperature...
- Temperature degeneracy is broken using different photometric bands

StarSim (Herrero et al. 2016, Rosich et al. in prep)

- Degenerated problem:
- Different spot distributions could fit similar photometric light curves: correlations between spot size, temperature...
- Temperature degeneracy is broken using different photometric bands

StarSim (Herrero et al. 2016, Rosich et al. in prep)

Degenerated problem:

- Radial velocities breaks spot distribution degeneracies

20-22 February 2019, Granada

StarSim (Herrero et al. 2016, Rosich et al. in prep)

- Degenerated problem:
- Radial velocities breaks spot distribution degeneracies

StarSim (Herrero et al. 2016, Rosich et al. in prep)

Degenerated problem:

- Radial velocity indices can also be used \rightarrow possibility to reconstruct the spot map and predict RV's

Present and future science with CARMENES

StarSim (Herrero et al. 2016, Rosich et al. in prep)

Degenerated problem:

- Radial velocity indices can also be used \rightarrow possibility to reconstruct the spot map and predict RV's

Present and future science with CARMENES

StarSim (Herrero et al. 2016, Rosich et al. in prep)

Degenerated problem:

- Radial velocity indices can also be used \rightarrow possibility to reconstruct the spot map and predict RV's

Present and future science with CARMENES

StarSim (Herrero et al. 2016, Rosich et al. in prep)

- Use CARMENES radial velocities and indices for M-type stars (open time for GK dwarfs)
- Collecting photometric data for some active GTO stars

CARMENCITA

StarSim (Herrero et al. 2016, Rosich et al. in prep)

 Chromatic index (Zechmeister et al. 2018) provides a lot of information (David's talk)

StarSim (Herrero et al. 2016, Rosich et al. in prep)

 Chromatic index (Zechmeister et al. 2018) provides a lot of information (David's talk)

Conclusions

- Activity indices can be used as radial velocity diagnostics, to distinguish exoplanets from stellar activity noise...
- ... but also to understand and infer stellar activity properties: temperature of photospheric spots, chromospheric phenomena, magnetic fields...
- Stellar surface can be reconstructed by combining photometry and spectroscopic information
 - Predict/correct radial velocity jitter
 - Predict/correct transit spectroscopy
- Understanding all these effects is crucial for future surveys aiming at ~cm/s accuracy and exo-atmosphere characterization
 → sample of active stars for next phase?

Title

Text

