

Disentangling the stellar activity of Barnard's Star

Borja Toledo Padrón Instituto de Astrofísica de Canarias

OUTLINE

- Introduction
- Analysis
- Results
- Conclusions

INTRODUCTION

- Barnard's Star (GJ 699):
 - Closest single star system to the Sun

- Barnard's Star (GJ 699):
 - Closest single star system to the Sun
 - Highest proper motion known to date

Parameter	GJ 699	Ref.
RA (J2000)	17:57:48.50	[1]
DEC (J2000)	+04:41:36.11	[1]
$\mu_{\alpha} \cos \delta (\text{mas yr}^{-1})$	-802.8 ± 0.6	[1]
μ_{δ} (mas yr ⁻¹)	$+10362.5 \pm 0.4$	[1]
Distance [pc]	1.8266 ± 0.0001	[1]
m _B	11.24	[2]
$m_{ m V}$	9.51	[2]
Spectral type	M3.5V	[3]
$T_{\rm eff}$ [K]	3278 ± 51	[4]
[Fe/H] (dex)	-0.12 ± 0.16	[4]
$M_{\star} [M_{\odot}]$	0.163 ± 0.022	[5]
$R_{\star} [R_{\odot}]$	0.178 ± 0.011	[5]
$L_{\star} [L_{\odot}]$	0.00329 ± 0.00019	[5]
$\log g (\text{cgs})$	5.10 ± 0.07	[4]
$\log (L_x/L_{bol})$	-5.4	[6]
$v \sin i [\mathrm{km \ s^{-1}}]$	<3	[4]

Ribas+2018

- Barnard's Star (GJ 699):
 - Closest single star system to the Sun
 - Highest proper motion known to date
 - Age of 7-10 Gyr (Sun: 4.6 Gyr)

Parameter	GJ 699	Ref.
RA (J2000)	17:57:48.50	[1]
DEC (J2000)	+04:41:36.11	[1]
$\mu_{\alpha} \cos \delta (\text{mas yr}^{-1})$	-802.8 ± 0.6	[1]
μ_{δ} (mas yr ⁻¹)	$+10362.5 \pm 0.4$	[1]
Distance [pc]	1.8266 ± 0.0001	[1]
$m_{\rm B}$	11.24	[2]
$m_{ m V}$	9.51	[2]
Spectral type	M3.5V	[3]
$T_{\rm eff}$ [K]	3278 ± 51	[4]
[Fe/H] (dex)	-0.12 ± 0.16	[4]
$M_{\star} [M_{\odot}]$	0.163 ± 0.022	[5]
$R_{\star} [R_{\odot}]$	0.178 ± 0.011	[5]
$L_{\star} [L_{\odot}]$	0.00329 ± 0.00019	[5]
$\log g (\text{cgs})$	5.10 ± 0.07	[4]
$\log (L_x/L_{bol})$	-5.4	[6]
$v \sin i [\mathrm{km s^{-1}}]$	<3	[4]

- Barnard's Star (GJ 699):
 - Closest single star system to the Sun
 - Highest proper motion known to date
 - Age of 7-10 Gyr (Sun: 4.6 Gyr)
 - Quiet star:
 - 1. Very low X-ray emission
 - 2. Lack of Halpha emission
 - 3. Low variability
 - Benchmark for intermediate M-dwarfs

Parameter	GJ 699	Ref.
RA (J2000)	17:57:48.50	[1]
DEC (J2000)	+04:41:36.11	[1]
$\mu_{\alpha} \cos \delta (\text{mas yr}^{-1})$	-802.8 ± 0.6	[1]
μ_{δ} (mas yr ⁻¹)	$+10362.5 \pm 0.4$	[1]
Distance [pc]	1.8266 ± 0.0001	[1]
$m_{\rm B}$	11.24	[2]
$m_{ m V}$	9.51	[2]
Spectral type	M3.5V	[3]
$T_{\rm eff}$ [K]	3278 ± 51	[4]
[Fe/H] (dex)	-0.12 ± 0.16	[4]
$M_{\star} [M_{\odot}]$	0.163 ± 0.022	[5]
$R_{\star} [R_{\odot}]$	0.178 ± 0.011	[5]
$L_{\star} [L_{\odot}]$	0.00329 ± 0.00019	[5]
$\log g (\text{cgs})$	5.10 ± 0.07	[4]
$\log (L_x/L_{bol})$	-5.4	[6]
$v \sin i [\mathrm{km s^{-1}}]$	<3	[4]

Ribas+2018

Spectrograph: HARPS. Telescope: 3.6 m. Observatory: La Silla, Coquimbo, Chile. Number of Spectra: 317

ectrograph: PFS Telescope: Magellan II. Observatory: Las Campanas, Atacama, Chile. Number of Spectra: 43

Observatory: Paranal, Antofagasta, Chile. Number of Spectra: 57

Observatory: La Silla, Coquimbo, Chile. Number of Spectra: 317

The in Bul

Spectrograph: HARPS. Telescope: 3.6 m.

Observatory: La Silla, Coquimbo, Chile. Number of Spectra: 317

rograph: PFS Felescope: Magellan II. watory: Las Campanas, Atacama, Chile. er of Spectra: 43

ANALYSIS

- Stellar Activity:
 - Can be confused with planetary signals

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days
 - 3. Rotation: Several Days
 - Especially important in M-dwarfs

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days
 - 3. Rotation: Several Days
 - Especially important in M-dwarfs
 - First estimation

 $log_{10}(P_{rot}) = A + B \cdot log_{10}(R'_{HK})$ $log_{10}(R'_{HK}) = log_{10}\left((1.34 \cdot 10^{-4}) \cdot C_{cf} \cdot \langle S_{mw} \rangle - R_{phot}\right)$

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days
 - 3. Rotation: Several Days
 - Especially important in M-dwarfs
 - First estimation
 - $\log(R'_{HK}) = -5.82$

 $log_{10}(P_{rot}) = A + B \cdot log_{10}(R'_{HK})$ $log_{10}(R'_{HK}) = log_{10}\left((1.34 \cdot 10^{-4}) \cdot C_{cf} \cdot \langle S_{mw} \rangle - R_{phot}\right)$

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days
 - 3. Rotation: Several Days
 - Especially important in M-dwarfs
 - First estimation
 - $\log(R'_{HK}) = -5.82$
 - $P_{rot} = 142 \ days$

 $log_{10}(P_{rot}) = A + B \cdot log_{10}(R'_{HK})$ $log_{10}(R'_{HK}) = log_{10}\left((1.34 \cdot 10^{-4}) \cdot C_{cf} \cdot \langle S_{mw} \rangle - R_{phot}\right)$

- Stellar Activity:
 - Can be confused with planetary signals
 - Sources:
 - 1. Oscillations: Minutes
 - 2. Granulation: Few Days
 - 3. Rotation: Several Days
 - Especially important in M-dwarfs
 - First estimation
 - $\log(R'_{HK}) = -5.82$
 - $P_{rot} = 142 \ days$
 - 4. Cycles: Years

- Previous Process:
 - 1. Blaze correction
 - a) HARPS and HARPS-N: Blaze spectrum
 - b) Other spectrographs: Second order polynomial

- Previous Process:
 - 1. Blaze correction
 - a) HARPS and HARPS-N: Blaze spectrum
 - b) Other spectrographs: Second order polynomial
 - 2. Re-binning

- Previous Process:
 - 1. Blaze correction
 - a) HARPS and HARPS-N: Blaze spectrum
 - b) Other spectrographs: Second order polynomial
 - 2. Re-binning
 - 3. Barycentric correction
 - a) HARPS, HARPS-N and CARMENES: Header
 - b) Other spectrographs: Our own estimation through RA, DEC, BJD and RV

- Previous Process:
 - 1. Blaze correction
 - a) HARPS and HARPS-N: Blaze spectrum
 - b) Other spectrographs: Second order polynomial
 - 2. Re-binning
 - 3. Barycentric correction
 - a) HARPS, HARPS-N and CARMENES: Header
 - b) Other spectrographs: Our own estimation through RA, DEC, BJD and RV
 - 4. Weights per echelle order

Toledo-Padrón+2018

1. H α $H = \frac{A}{L+R}$

Toledo-Padrón+2018

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H + K}{R + V}$$

Toledo-Padrón+2018

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H+K}{R+V}$$

3. NaD

$$N = \frac{D_1 + D_2}{L + R}$$

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H+K}{R+V}$$

3. NaD

$$N = \frac{D_1 + D_2}{L + R}$$

4. FWHM

 $FWHM = 2\sqrt{2\ln(2)}\,\sigma$

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H+K}{R+V}$$

3. NaD

$$N = \frac{D_1 + D_2}{L + R}$$

4. FWHM

 $FWHM = 2\sqrt{2\ln(2)}\sigma$

5. Photometric Magnitudes

Observatory/ Survey/ Telescope	Aperture [m]	Filter	Error [mmag]	RMS [mmag]
ASAS-3	0.07	V	10.3	17.0
ASAS-3N	0.10	V	13.0	16.1
ASAS-SN	0.14	V	5.2	8.3
Combined ASAS	0.07, 0.10, 0.14	V	10.4	16.8
FCAPT & RCT	0.80, 1.30	V	4.9	11.2
MEarth	0.40	RG715	16.5	6.5
SNO	0.90	В	4.5	5.4
		V	4.4	6.4
		R	5.8	5.3
OAdM	0.80	R	7.2	9.6
		Ι	8.4	8.8
AAVSO	Range	$V, BRIH\alpha$	15.1	8.9
LCO	0.40	V	16.0	30.5
		r'	31.1	45.2
		i'	91.4	75.6
ASH2	0.40	[OIII]	14.1	7.1
		$H\alpha$	23.9	12.5
		[SII]	16.8	9.5

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H+K}{R+V}$$

3. NaD

$$N = \frac{D_1 + D_2}{L + R}$$

4. FWHM

 $FWHM = 2\sqrt{2\ln(2)}\sigma$

- 5. Photometric Magnitudes
- 6. Chromatic Index

1. Hα

$$H = \frac{A}{L+R}$$

2. CaHK

$$S = \frac{H+K}{R+V}$$

3. NaD

$$N = \frac{D_1 + D_2}{L + R}$$

4. FWHM

 $FWHM = 2\sqrt{2\ln(2)}\,\sigma$

- 5. Photometric Magnitudes
- 6. Chromatic Index
- 7. Bisector Span

• Subsequent Process:

Stellar Activity Sources

• Subsequent Process:

Stellar Activity Sources

• Subsequent Process:

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument

• Structure:

- 1. Generalized Lomb-Scargle periodogram (GLS)
- 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
- 3. Pre-whitening for a single instrument
 - Double sinusoidal fit

• Structure:

- 1. Generalized Lomb-Scargle periodogram (GLS)
- 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
- 3. Pre-whitening for a single instrument
 - Double sinusoidal fit

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument
 - Double sinusoidal fit

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument
 - Double sinusoidal fit
 - 4. Isolate each individual signal

- Structure:
 - Generalized Lomb-Scargle periodogram (GLS) 1.
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - Pre-whitening for a single instrument
 - Double sinusoidal fit
 - Isolate each individual signal

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument
 - Double sinusoidal fit
 - 4. Isolate each individual signal

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument
 - Double sinusoidal fit
 - 4. Isolate each individual signal

Signal to be isolated

Model to be subtracted

 P_1

 P_2

 P_3

 P_4

- Structure:
 - 1. Generalized Lomb-Scargle periodogram (GLS)
 - 2. False Alarm Probability (FAP) levels from Bootstrapping
 - 10000 iterations
 - 3. Pre-whitening for a single instrument
 - Double sinusoidal fit
 - 4. Isolate each individual signal

RESULTS

- 618 measurements
 - <H>=0.48
 - Mean Error=0.001
 - RMS=0.01

- 348 measurements
 - <\$>=4.63
 - Mean Error=0.06
 - RMS=0.6

- 448 measurements
 - <N>=0.19
 - Mean Error=0.01
 - RMS=0.02

	5
п	

- 448 measurements
 - <N>=0.19
 - Mean Error=0.01
 - RMS=0.02

- Differential Rotation
 - 40% in the Sun
 - 25 days in the equator
 - 35 days in the pole
 - 15% in Barnard
 - Comparing the ${\sf H}\alpha$ and NaD values

- 387 measurements
 - <FWHM>=4.52 km/s
 - Mean Error=0.0005 km/s
 - RMS=0.006 km/s

- 1390 measurements
 - <V>=9.5 mag
 - Mean Error=9.2 mmag
 - RMS=15.4 mmag

- Results:
 - 1390 measurements
 - <V>=9.5 mag
 - Mean Error=9.2 mmag
 - RMS=15.4 mmag

CONCLUSIONS

- **Conclusions:** From all time-series:
 - The 233-day period signal does not have a stellar activity origin.

Planet	Rotation Period	Long-term Cycle

- **Conclusions:** From $H\alpha$, NaD and V-band photometry time-series:
 - $P_{rot} = 145 \pm 15 \, days$

- **Conclusions:** From $H\alpha$, NaD and V-band photometry time-series:
 - $P_{rot} = 145 \pm 15 \ days$
 - Differential rotation between 130 and 180 days

		-		
-	E	m	r_1	1

- **Conclusions:** From $H\alpha$, NaD and V-band photometry time-series:
 - $P_{rot} = 145 \pm 15 \ days$
 - Differential rotation between 130 and 180 days
 - One of the lowest rotation known to date

Planet	Rotation Period	Long-term Cycle
Conclusions: From CaHK and V-band	photometry time-series:	

- Cycle = 10 ± 2 years
 - Not expected for a completely convective star like Barnard

Planet

- **Conclusions:** From CaHK and V-band photometry time-series:
 - $Cycle = 10 \pm 2$ years
 - Not expected for a completely convective star like Barnard
 - Opposite behavior from the Sun

Ρl	ar	ie	t
----	----	----	---

- **Conclusions:** From CaHK and V-band photometry time-series:
 - Cycle = 10 ± 2 years
 - Not expected for a completely convective star like Barnard
 - Opposite behavior from the Sun
 - Active FGK stars: Spot-dominated stellar surface
 - 1. Spot dominate brightness changes
 - 2. Plages dominate chromospheric and X-ray emission

Ρl	ar	ie	t
----	----	----	---

- **Conclusions:** From CaHK and V-band photometry time-series:
 - Cycle = 10 ± 2 years
 - Not expected for a completely convective star like Barnard
 - Opposite behavior from the Sun
 - Active FGK stars: Spot-dominated stellar surface
 - 1. Spot dominate brightness changes
 - 2. Plages dominate chromospheric and X-ray emission
 - Barnard's Star is not an 'active star

THANK YOU For your attention