

Red and brown dwarfs in the ultraviolet

José A. Caballero Centro de Astrobiología Madrid

Why red and brown dwarfs?

"Red dwarfs" = field Mand early-L-type stars

"Brown dwarfs" = field
late-L- and T-type dwarfs
and young late-M- and Ltype substellar objects in
star-forming regions, open
clusters and moving groups

Topics

- UV instrumentation.
 - WSO-UV Project
 - Space missions
 - Ground based UV observations
- Stellar physics and evolution.
 - Star formation
 - Young stars
 - Massive stars
 - Compact objects
 - Close binaries
- Milky Way and galaxies.
 - Interstellar and intergalactic medium
 - Galactic astronomy
 - Galaxies
 - Stellar populations
 - Cosmology
- Planetary atmospheres.
 - Solar system
 - Exoplanets

Related talks

Javier **López-Santiago**: The size of stellar coronae from flaring events

Néstor **Sánchez**: Young stellar candidates toward the Orion region selected from GALEX

Fátima **López-Martínez**: Magnetospheric properties of T

Magnetospheric properties of T Tauri stars through C II], Fe II] and Si II] ultraviolet emission lines

Jordi **Torra**: Gaia data are coming

12:30-13:00	The size of stellar coronae from flaring events Javier López Santiago	Stellar
13:00-13:30	Red and brown dwarfs in the ultraviolet Jose A. Caballero	Session 2 Stellar physics and evolution
13:30-13:45	Young Stellar Object candidates toward the Orion region selected from GALEX Néstor Sánchez	evolutio
13:45-14:00	Reddenning determination and model fitting of early type stars observed by WSO Carmen Morales]
14:00-15:30	Lunch	
15:30-15:45	Magnetospheric properties of T Tauri stars through CII], FeII] and SiII] ultraviolet emission lines Fátima López Martínez	
15:45-16:15	Winds of metal-poor OB stars: prospects for the WSO and ISSIS Miriam García García	
16:15-16:45	OB stars models: the role of the UV region Artemio Herrero	Sellar
16:45-17:15	Coffee Break	Session 3 Stellar physics and evolution
17:15-17:45	Revisiting the UV-optical-IR extinction law Jesús Maíz	volution
17:45-18:00	Tracking mass transfer processes: the case of High Mass X-Ray Binary Systems Pere Blay	
18:00-18:30	Gala data in coming Jordi Torra	

Field M dwarf photometry

Holgado (2014)

Field M dwarf spectroscopy

Alonso-Floriano et al. (2014)

Field M dwarf spectroscopy

Hidalgo (2014)

Field M dwarf spectroscopy

Martínez-Rodríguez (2014)

Field M dwarf X-rays

González-Álvarez (2014)

Field M dwarf X-rays

González-Álvarez (2014)

Field M dwarf photometry

Holgado (2014)

UV excess & activity

Field M dwarf activity

Possible origin of UV excesses, Hα and other Fátima's emission lines, X-rays, Javi's flares... and all **activity features**:

- Close binarity (orbital P = rotation P)
- Youth (as in Néstor Orion young stars: accretion and angular momentum evolution → related to planet formation)

COMBOS

Calar Alto high
Resolution
search for M
dwarfs with
Exoearths with
Near-infrared
and optical
Echelle
Spectrographs

WSO-UV synergy 1

NUV and FUV photometry of the brightest, latest, single M dwarfs with $\delta > -23$ deg \rightarrow Targets for CARMENES exoplanet hunting

Complement GALEX: SEDs, UV excesses, the CARMENCITA legacy catalogue...

+Monitoring: flares, accurate periods... and perhaps transits (Enric's talk)

Field M dwarf photometry

Holgado (2014)

Gaia and brown dwarfs from Spain

- Red española de Explotación de Gaia (RecGaia)
- Network coordinated from Barcelona; researchers from virtually all astronomy centres in Spain
- Several research lines, including 'very low-mass stars, brown dwarfs and exoplanets' (BajaMasa, low mass), with 20+ investigators

BajaMasa RecGaia research lines

- •EXOS: exoplanetary systems
 - •EXOS-1: astrometry of known systems
 - •EXOS-2: radial velocity of new systems
 - •EXOS-3: detailed characterisation
- •MLT: ultracool dwarfs
 - •MLT-1: late M (H-R diagrams, kinematics...)
 - •MLT-2: L and T (isolated or companions)
- •YBD: young brown dwarfs
 - •Bottom of the (I)MF in young open clusters and stellar associations

WSO-UV synergy 2

NUV and FUV photometry of the brightest ultracool dwarfs (SpT > M6V)

Complement GALEX: SEDs, UV excesses

VO public catalogue with homogeneous astrometry, photometry, spectroscopy, asttrophysical parameters (exoplanets.eu, dwarfarchive.org): MAIA

WSO-UV synergy 2

M-, L- and T-dwarf Archive of Interest for Astrophysics

Mem. S.A.It. Vol. 75, 282 © SAIt 2008

Gaia and brown dwarfs from Spain

J. A. Caballero¹

Departamento de Astrofísica, Centro de Astrobiología (CSIC-INTA), PO Box 78, 28691, Villanueva de la Cañada, Madrid, Spain, e-mail: caballero@cab.inta-csic.es

Abstract. Gaia will not observe 50 000 brown dwarfs, but about 100 times less. However, these ≤ 500 brown dwarfs will be benchmarks for many substellar topics. It is possible to identify them in advance and make the list public to all astronomers worldwide through a virtual observatory-compliant "Gaia brown dwarf" catalogue. This M-, L- and T-dwarf Archive of Interest for Astrophysics would tabulate precise Gaia astrometry, multiband photometry, high- and low-resolution spectroscopy and homogeneously derived astrophysical parameters. Spanish observatories may play a key role in the catalogue preparation.

Key words. Astronomical databases: miscellaneous – Catalogues – Stars: brown dwarfs – Stars: late-type

European Research Council

Established by the European Commission

ISSIS/WSO-UV and σ Orionis: brown dwarfs in the ultraviolet (4)

Age $\tau \sim 3$ Ma Distance $d \sim 385$ pc Radius $\rho \sim 30$ arcmin Extinction $A_{\rm V} < 0.3$ mag

Important because...

A well-studied mass function, esp. in the low-mass stellar and substellar domain

Brown dwarfs and "isolated planetarymass objects" (IPMOs)

V2728 Ori (Mayrit 495216): X-shooter/VLT (Rigliaco et al. 2011)

- Default observation:
 - One brown dwarf per pointing (no survey)
 - \circ NUV $t_{\rm exp} \ge 900 \, \rm s$
 - Open filters (Mg II λ280 nm?)
 - o FUV impossible!
- Extend SED from ugriz to the NUV: colour-colour diagrams → UV excess & accretion indication

WSO-UV synergy 3

A programme:

- N brown dwarfs and very low-mass stars (NUV, open, 900 s)
- + 33% overheads ~1.2 ks per field
- o Total time = 1.2N ks
- o XMM-Newton comparison: 24-36 ks → N = 20-30 targets (statistics)

WSO-UV @ σ Orionis (and many other clusters!)

"Brown dwarfs in UV: a Letter;
IPMOs in UV: a Science or a Nature"

Caballero (2009, 2011, 2012, 2014)

World Space Observatory - UltraViolet

M-, L- and T-dwarf Archive of Interest for Astrophysics

