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  Materials and Methods 

Spectroscopic observations 
Spectroscopic data employed for the RV analysis were obtained with the CARMENES            
spectrograph, the newly commissioned MAROON-X spectrograph, and from archival data from           
the High Resolution Echelle Spectrometer (HIRES) (32) at the 10.0 m Keck I Telescope, and the                
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High Accuracy Radial velocity Planet Searcher (HARPS) (33) at the European Southern            
Observatory (ESO) 3.6 m Telescope. Fig. S1 shows the available RV data combined after              
subtraction of the mean RV offset. 

Gliese 486 (34) is one of the about 350 M-dwarf targets regularly monitored in the               
CARMENES (Calar Alto high-Resolution search for M dwarfs with Exo-earths with           
Near-infrared and optical Echelle Spectrographs) guaranteed time observation program. Detailed          
descriptions of the CARMENES instrument at the 3.5 m Calar Alto telescope and the on-going               
exoplanet survey can be found in (​1​) and (10). For Gliese 486 we obtained 80 pairs of optical                  
(VIS: 520-960 nm) and near-infrared (NIR: 960-1710 nm) spectra between January 2016 and             
June 2020 with a total time baseline of 1612.7 d. The typical exposure time was about 20 min,                  
chosen with the goal of reaching a signal-to-noise ratio (S/N) of 150 in the ​J band. All the                  
spectra went through the standard CARMENES data flow (3​5​). Using the version 2.20 of the               
data reduction pipeline and of the SpEctrum Radial Velocity AnaLyser (​SERVAL​) (36), we             
computed VIS and NIR radial velocity (RV) measurements. Additionally, we computed and            
corrected the nightly zero-point (NZP) offsets of the CARMENES data (3​7​). Four CARMENES             
epochs were discarded because the spectra were taken without simultaneous Fabry-Pérot etalon            
wavelength calibration. The resulting 76 VIS RVs had a weighted root-mean-square velocity,            
wrms​C−VIS​, of 2.56 m s​−1 and a median uncertainty, σ̂ C−VIS​, of 1.17 m s​−1​. We additionally                
discarded 16 NIR spectra obtained before the start of the nominal operations of the NIR channel                
(3​8​). For the remaining 60 CARMENES NIR measurements of Gliese 486 we measured             
wrms​C−NIR = 6.36 m s​−1 and σ̂ C−NIR = 4.36 m s​−1​. Simultaneously with the RVs extraction from                 
CARMENES spectra, ​SERVAL computes the time series of several stellar activity indices: the             
chromatic index (CRX), the differential line width (dLW), calcium infrared triplet (Ca IRT), Hα,              
and Na ​I D1 and D2. Using the ​RACOON pipeline (39), from the CARMENES spectra we also                 
calculated the full-width half-maximum (FWHM) of the cross-correlation function (CCF)          
profile, the bisector inverse slope (BIS) span, and contrast stellar line measurement (CON) of the               
spectral lines (40). The time series of the RV and all activity indices from CARMENES VIS and                 
NIR channels, together with their individual uncertainties, are listed in Tables S1 and S2,              
respectively. 

We also performed RV observations of Gliese 486 using the MAROON-X instrument            
(20, ​41​) on the 8.1 m Gemini North telescope. MAROON-X is a fiber-fed double-channel optical               
(blue: 500-670 nm, red: 650-920 nm) spectrograph with a resolving power R = 85,000 designed               
for RV observations of M dwarfs. We obtained 65 spectra of Gliese 486 in 17 visits over 13                  
nights between 20 May and 02 June 2020 using MAROON-X. Visits comprised between two              
and six consecutive exposures of 300 or 600 s each, depending on seeing conditions and cloud                
coverage. The typical S/N per pixel was about 120 and 280 in the blue and red channels,                 
respectively. Each spectral resolution element is sampled by 3.2 pixels on average. The             
MAROON-X data were reduced using a custom Python 3 pipeline based on tools previously              
developed for the ​CRyogenic high-resolution InfraRed Echelle Spectrograph (CRIRES) ​(​42, 43​).           
The MAROON-X data reduction software, which is being incorporated into Gemini's data            
reduction platform, can meanwhile be provided upon reasonable request. Similarly to           
CARMENES, the MAROON-X wavelength calibration strategy used stabilized Fabry-Pérot         
etalon exposures that were taken simultaneously with the data using a dedicated fiber. The              
instrumental drift correction was part of the wavelength calibration. Radial velocities and activity             
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indices were measured using ​SERVAL​. MAROON-X red data have wrms​MX−red = 2.26 m s​−1 and               
σ̂ MX−red = 0.39 m s​−1​, and blue data have wrms​MX−blue = 2.36 m s​−1 and σ̂ MX−blue = 0.82 m s​−1​. The                     
time series of the RV and all activity indices from MAROON-X red and blue, together with their                 
individual uncertainties, are listed in Tables S3 and S4, respectively. 

We retrieved archival RV measurements of Gliese 486 taken with HIRES and HARPS.             
There are 27 HIRES RVs in a published catalogue (44), with later NZP corrections (45). For                
Gliese 486 these datasets (44) and (45) are almost identical, but we decided to use the corrected                 
data set for consistency with the CARMENES data (37). The HIRES observations of Gliese 486               
were taken between January 1998 and January 2011, with a total temporal baseline of 4740.8 d.                
After removing an obvious outlier at barycentric Julian date BJD = 2452006.986 with a              
3σ-clipping filter, the HIRES RV data have a wrms​HIRES = 6.64 m s​−1 and a σ̂ HIRES = 3.22 m s​−1​,                    
which are larger than those of CARMENES and MAROON-X. There are 12 NZP-corrected             
HARPS RVs of Gliese 486 in the HARPS-RVBank database (​46​). The corresponding spectra             
were taken between June 2004 and May 2011 with a total temporal baseline of 2533.0 d. The                 
HARPS RV data have wrms​HARPS = 3.33 m s​−1 and σ̂ HARPS ​= 1.16 m s​−1​. HARPS-RVBank also                 
tabulates CRX, dLW, Ca IRT, Hα, and Na I D1 and D2 computed with ​SERVAL and FWHM, BIS,                  
and CON computed with the Data Reduction Software (​DRS​)​, the standard HARPS pipeline.  
 

Photometric monitoring 

Gliese 486 (TOI-1827) was observed in 2 min short-cadence integrations by the TESS             
spacecraft in Sector 23, camera 1, detector chip number 3, between 18 March 2020 and 16 April                 
2020. We retrieved the TESS data from the Mikulski Archive for Space Telescopes. For this              
target, the Science Processing Operations Center (SPOC) (​47​) provided both simple aperture            
photometry (SAP) and systematics-corrected photometry adapted from the ​Kepler Pre-search          
Data Conditioning algorithm (PDC) (​48, 49​). The PDC light curve is constructed by detrending              
the SAP light curve using a linear combination of cotrending basis vectors, which are derived               
from a principal component decomposition of the light curves individually for each sector,             
camera, and CCD. PDC light curves are corrected for contamination from nearby stars and              
instrumental systematics including pointing drifts, focus changes, and thermal transients. Fig. S2            
shows the target pixel file (TPF) image of Gliese 486 constructed from TESS and ​Gaia DR2 data                 
with the ​TPFPLOTTER tool (​50 ​), and a false-color image from ​u’ ​-, ​i’​-, ​z’​-band Sloan Digital Sky                
Survey (SDSS9) data (​51​) with the Aladin sky atlas (​52​). Comparing Fig. S2 to previous               
adaptive optics (​14​) and ​Hubble Space Telescope high-resolution imaging, we expect negligible            
flux dilution by stellar contaminants in the TESS aperture mask in the epoch of TESS               
observations (and all photometric observations described below (​53​)). 

We carried out additional ground-based photometric monitoring and retrieved archival           
magnitude series for ruling out nearby eclipsing binaries, further characterizing the transit events,             
and trying to determine the stellar rotation period. Three transits of Gliese 486 b were observed                
simultaneously in ​g​, ​r​, ​i​, and ​zs bands with the Multicolour Simultaneous Camera for studying               
Atmospheres of Transiting exoplanets 2 (MuSCAT2) (​18​) on the 1.52 m Telescopio Carlos             
Sánchez at Observatorio del Teide on 9 May 2020, 12 May 2020, and 3 June 2020. The                 
observations on 9 May covered 1.7 h centred around the expected transit mid-time, with airmass               
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varying from 1.2 at the beginning of the observations to 1.8 at the end of the observations. The                  
observations on 12 May covered 4.3 h approximately centered around the expected transit             
mid-time with airmass covering values from 1.05 to 1.45. The observations on 3 June were               
affected by poor weather conditions, so not used. All MuSCAT2 observations were defocused,             
optimizing the photometry for a star as bright as Gliese 486. However, the lack of suitably bright                 
comparison stars in the field of view led to a sub-optimal photometry, and the white noise                
estimates in the reduced light curves vary from ∼ 2.3 ‰ in ​g to ∼ 1.6 ‰ in ​zs​. We performed                     
relative photometry using standard aperture photometry calibration and reduction steps with a            
dedicated MuSCAT2 photometry pipeline based on P​Y​T​RANSIT (​54, 55​). The pipeline calculates            
aperture photometry for a set of comparison stars and aperture sizes, and produces the final               
relative light curves via global optimization of a model that aims to find the optimal comparison                
stars and their aperture size while simultaneously modeling the transit and baseline variations as              
linear combinations of a set of covariates. 

We observed three full transits of Gliese 486 with Las Cumbres Observatory Global             
Telescope (LCOGT) 1.0 m network (​19​) in the ​z filter on 15 May 2020, 24 May 2020, and 5                   
June 2020. The telescopes are equipped with 4k × 4k cameras having an image scale of 0.389                 
arcsec pixel​-1​, resulting in a 26 × 26 arcmin​2 field of view. The telescopes were defocused and                 
yielded point spread functions with FWHM of approximately 8 arcsec. The transits on 15 May               
2020 and 24 May 2020 were observed continuously for 235 and 187 min from the LCOGT node                 
at the South African Astronomical Observatory using 25 s exposures, which resulted in 240 and               
171 images, respectively. The transit on 5 June 2020 was observed continuously for 247 min               
from the LCOGT node at Siding Spring Observatory using 25 s exposures, which resulted in 251                
images. The images were calibrated by the standard LCOGT ​BANZAI pipeline (​56​) and the              
photometric data were extracted using the A​STRO​I​MAGE​J software package (​57​). Circular           
apertures with radius 25, 30, and 20 pixels were used to extract differential photometry from the                
15 May 2020, 24 May 2020, and 5 June 2020 data, resulting in model residuals of 660, 350, 380                   
ppm in 10 min bins, respectively.  

We observed a full transit of Gliese 486 b continuously for 258 min on 08 Jun 2020 in ​Rc                   
band with the Perth Exoplanet Survey Telescope (PEST) near Perth, Australia. The 0.3 m              
telescope is equipped with a 1.5k × 1k camera with an image scale of 1.2 arcsec pixel​-1​, resulting                  
in a 31 × 31 arcmin​2 field of view. The images had typical stellar point spread functions with a                   
FWHM of 4.0 arcsec. The data did not detect the transit, but did rule out nearby eclipsing                 
binaries in all six stars within 2.5 arcmin of the target that are bright enough to contaminate the                  
TESS data. 

The Wide Angle Search for Planets (WASP) transit search consisted of two wide-field             
arrays of eight cameras, with SuperWASP-North being at the Observatorio del Roque de Los              
Muchachos in La Palma, Spain, and WASP-South being at the South African Astronomical             
Observatory in Sutherland, South Africa (​16​). The field of Gliese 486 was observed by both               
arrays. SuperWASP-North observed Gliese 486 in four consecutive seasons from 2008 to 2011,             
for spans between 50 and 120 d each season. It was equipped with a 200 mm f/1.8 lens with a                    
broadband filter spanning 400-700 nm, backed by 2k × 2k CCDs, giving a plate scale of 13.7                 
arcsec pixel​−1​. Observations on every clear night rastered available fields with a typical 15 min               
cadence. In 2013 and 2014, Gliese 486 was observed by WASP-South for spans of 120 and 170                 
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d. The array was then equipped with 85 mm f/1.2 lenses with an SDSS ​r’ filter, giving a plate                   
scale of 32 arcsec pixel​−1​. In the magnitude range of Gliese 486, SuperWASP-North, with its               
bigger lens and finer plate scale, provided less red noise and better background subtraction than               
WASP-South. In total, we collected over 51 714 SuperWASP photometric measurements of            
Gliese 486 from the Northern (wrms = 0.012 mag) and Southern (wrms = 0.051 mag)               
hemispheres. For comparison purposes and monitoring of systematics, we also collected the light             
curves of four nearby stars with similar brightness. These stars were; 1SWASP            
J124802.97+094759.9, V=12.95 mag., 1SWASP J124816.33+095108.4, V=12.58 mag., BD+10        
2472,  V= 9.70 mag., and  TYC 882-378-1,  V=11.34 mag.  

We searched for public time series data of wide-area photometric surveys and databases             
following (​58​). The sparse All-Sky Automated Survey ASAS (​59​) and Northern Sky Variability             
Survey NSVS (​60​) data sets of Gliese 486 with rms of 0.066 mag and 0.032 mag, respectively,                 
did not have any significant peak with <0.1% FAP in the periodograms. We also retrieved light                
curves from the All-Sky Automated Survey for SuperNovae (ASAS-SN) (​61​) in the ​g’ and ​V               
bands, which spanned from November 2012 to May 2020. Because Gliese 486 has a high proper                
motion, we obtained the ​V​- and ​g’​-band magnitudes from ASAS-SN by season. We retrieved the               
calculated real-time magnitudes using aperture photometry centred on the expected equatorial           
coordinates of Gliese 486 at the middle of every observing season (mid March). The ASAS-SN               
V​- and ​g’​-band magnitudes are zero-point calibrated with the ​American Association of Variable             
Star Observers Photometric All Sky Survey ​APASS catalogue (62). In total, we retrieved 2175              
archival data points, of which 984 were taken in the ​V band (972 useful, wrms = 0.020 mag) and                   
1191 in the ​g’​ band (1064 useful, wrms = 0.039 mag). 

We conducted observations with the 0.8 m Telescopi Joan Oró (TJO) at the Observatori              
Astronòmic del Montsec in Lleida, Spain, as part of the CARMENES photometric follow-up             
program. We aimed to cover the ±3σ phase window around the conjunction time predicted by the                
RV solution at the time of observations. The transit time 1σ uncertainty of 2.35 hr implied                
monitoring Gliese 486 over a time window of 7 h at both sides of the predicted zero phase. We                   
collected data on 9, 11, and 14 April, and 3 May 2020, obtaining a total of 1578 images with the                    
Johnson ​R filter using the Large Area Imager for Astronomy (LAIA) imager, a 4k × 4k CCD                 
with a field of view of 30 arcmin and a scale of 0.4 arcsec pixel​−1​. The images were calibrated                   
with dark, bias, and flat fields frames using the observatory pipeline. Differential photometry             
was extracted with ​AstroImageJ using the aperture size and the set of comparison stars selected               
to minimize the rms of the photometry. We covered most of the early side of the foreseen time                  
window, including the predicted transit epoch. However, no transit was detected. The TESS data              
later showed the transit occured 2.04 h later than we had initially predicted (but within the 1σ                 
uncertainty at that time), corresponding to an orbital phase that had not been sampled. 

 
 

Stellar parameters and rotation period 
Stellar parameter estimates for Gliese 486 are given in Table 1. Published spectral types of               
Gliese 486 have varied between M3.0 V (​63​) and M4.0 V (​64​), i.e., a spectral typing uncertainty                 
of 0.5 subtypes (​65​). The photosphere parameters (​T​eff​, log ​g​, and (Fe/H)) of Gliese 486 were                
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adopted from previous compilations by (​66​) that used CARMENES spectra. The bolometric            
luminosity was taken from (​12) and the ​T​eff from (​66​); combining these with the              
Stefan-Boltzmann law, we calculated the stellar radius. The mass-radius relation of (​13​), was             
used to determine the stellar mass.  

Gliese 486 is an M dwarf with very weak chromospheric activity (​67,68,69​). It is a slow                
rotator with very narrow spectroscopic lines (​70, 71​), faint Ca II H&K emission (​72, 73​), and                
weak magnetic field (​74​). A log ​R​'​HK was calculated by averaging the HIRES ​S​MWO index series                
after discarding three obvious outliers and a fourth datum with a low S/N. The mean ​S​MWO                
corresponds to log ​R​’​HK = –5.51±0.39 and an expected rotation period of ~90 d (using the                
relations of (​70​) and the ​V and ​K​s magnitudes of (​75​) and (​76​), respectively). The mean value of                  
log ​R​’​HK from the HIRES data is higher than that from HARPS data (​70​), but consistent within                 
1σ, and the larger uncertainty arises from intrinsic variability of the Ca II H&K doublet.  

We used the photometric data sets of SuperWASP and ASAS-SN to measure the stellar              
rotation period of Gliese 486. After accounting for the discrete Fourier transform window             
functions of the observations, three significant peaks appear in the periodograms (Fig. S3), at              
approximately 189 d, 125 d, and 93 d, similar to the 1/2, 1/3, and 1/4 yearly harmonics at 182.62                   
d, 121.75 d, and 91.31 d that could be produced by the observing schedule. These were visible                 
only in the SuperWASP-North dataset (with the longest time baseline and smallest wrms) and for               
Gliese 486, as no other SuperWASP comparison star of similar brightness in the same field of                
view displayed those peaks. A corresponding peak at about 125-130 d appears with false alarm               
probability (FAP) ≈ 1 % in the Lomb-Scargle periodograms (GLS) (77) of ASAS-SN ​g’ and               
CARMENES VIS H𝛼 data (see below). This is consistent with the periods estimated from log               
R​’​HK​, suggesting the SuperWASP-North peak at ~ 125 d is real. We modelled the SuperWASP               
and ASAS-SN data using a quasi-periodic Gaussian process (GP) analysis, following (​78) using             
the ​JULIET library (​53​) library. We used the exp-sin-squared kernel multiplied with a             
squared-exponential kernel and produced nightly bins for the photometric data. We fitted an             
offset and a jitter term (in quadrature to the diagonal of the resulting covariance matrix of the                 
GP) and applied distinct GP hyperparameters for the amplitudes for each instrument and             
photometric band. Global GP hyper-parameters we used for the time scale of the amplitude              
modulation and the rotation period. This analysis indicated a stellar rotation period ​P​rot,GP =              

d.130.1+1.6
−1.2  

 
Joint transit and RV analysis 

Tools 

For data and orbital analysis of the Gliese 486 system, we employed the E​XO​-S​TRIKER exoplanet               
toolbox (​21, 79​) to produce a generalized Lomb-Scargle periodogram (GLS) (​77​), a maximum             
likelihood periodogram (MLP) (​80, 81​), transit photometry detrending using the ​wōtan code            
(​82​), and transit period search using the transit least squares (TLS) package (​83​). For orbital               
parameter analysis, the E​XO​-S​TRIKER offers a fast RV and transit best-fit optimization and             
sampling schemes such as Markov chain Monte Carlo (MCMC) sampling using the ​EMCEE             
sampler (84) and the nested sampling technique (85) with the ​DYNESTY sampler (​86​), which were               
coupled with the ​CELERITE package (​87 ​) for GP regression analysis. To build transit light curve               
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models, and extract transit timing variations (TTV), the E​XO​-S​TRIKER uses the BAsic Transit             
Model cAlculatioN package (​BATMAN​) (​88​).  

We also used the ​JULIET library (​53​) for GP analysis of the ground-based photometry data and                 
for comparison with the E​XO​-S​TRIKER​ analysis. 
 
 

Periodogram analysis 
We computed the MLP for period search in RVs and activity indices of Gliese 486. The MLP                 
implementation is similar to a GLS periodogram, but allows for multiple data sets, each with an                
additive offset and a jitter term (​80​). The log likelihood (ln ​L​) is optimized for each test                 
frequency. Because the MLP fits more parameters, MLP is more computationally expensive than             
the GLS periodogram, but the MLP is more appropriate for a period search in combined RV data                 
sets that have an unknown variance (that is, RV jitter). We adopted significance thresholds of the                
likelihood improvements with respect to a model constructed from the same parameters but with              
zero amplitude, that correspond to false-alarm probabilities of 10%, 1%, and 0.1%. Fig. S4A              
shows the MLP periodograms of the CARMENES VIS and NIR, MAROON-X red and blue,              
HIRES, and HARPS RV time series, separately and combined. The CARMENES VIS and the              
MAROON-X red and blue data each indicate significant power (FAP < 0.1%) at a period of                
1.467 d, much shorter than the stellar rotation period. The MAROON-X data have a short               
temporal baseline of only ~13.2 d, so the Δln ​L power spectrum has lower resolution than the                 
CARMENES, HARPS, and HIRES data, Nevertheless, the MAROON-X data has significant           
(FAP < 0.1%) power at frequency consistent with the same period. Another strong peak in the                
CARMENES VIS and MAROON-X periodograms appears at the 1 d alias frequency ​f​alias ​of the               
planetary period in the form of ​f​alias = ​f ​1d​− ​f ​planet period ≈ 0.31834 d​−1 (leading to an alias period of                     
P​alias​ ≈ 3.14 d), which is no longer seen when the signal of Gliese 486 b is subtracted. 

For stars of spectral types M3-4 V, such as Gliese 486, the spectroscopic information              
(i.e., the number of deep spectral lines) needed for precise RV measurements is not very               
abundant in the CARMENES NIR spectra (​10, 37​). We find that the 60 CARMENES NIR RVs                
are less precise and do not have any significant peak with FAP < 0.1% in the MLP periodogram.                  
The HIRES and HARPS data separately do not show significant power with FAP < 0.1% at any                 
frequency either, but the HARPS data set consists of only 12 measurements, while the HIRES               
dataset consists of 26 measurements with lower precision. The MLP periodogram of the             
combined data set shows power at 1.467 d, which is dominated by the CARMENES VIS and                
MAROON-X RVs. The combined data residuals of the joint transit-RV one-planet model (see             
below) ​do not show other significant periods.  

The MLPs of the CARMENES activity indicators are shown in Fig. S4B. Except for the               
Hα index, none of them displays signals with significant power of FAP < 0.1% at periods                
between 1 d and 500 d, in line with previous studies indicating Gliese 486 is a low activity star.                   
The Hα MLP has a strong peak at 1/354 d​−1 and another weaker one, but marginally significant                 
(FAP ∼ 1 %), at 1/130 d​−1​. The MLP periodograms of the MAROON-X activity indicators are                
shown in Fig. S4C. Activity indicators of MAROON-X such as the CRX, Na I D, and Ca IRT                  
do not indicate any significant level of activity in the red and the blue channel. The differential                 
line width and Hα show some marginally significant periodicity (FAP ∼ 1 %) in both channels,                
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but without a clear sign of correlation with the RVs over the short MAROON-X temporal               
baseline. 
 

Joint modeling fitting   

For the joint fit analysis, we used only data that showed significant RV signal with FAP < 0.1%,                  
or transit light curves, consistent with the presence transit events of Gliese 486 b. The used RV                 
datasets were CARMENES VIS and MAROON-X blue and red, whereas we did not use HIRES               
and CARMENES NIR due their intrinsic large RV scatter and insufficient precision. We found              
that the HARPS ​SERVAL RVs generally agree in phase and amplitude with Gliese 486 b, but their                 
overall statistical weight was much smaller than those of CARMENES and MAROON-X, and             
thus we decided not to include these data in the orbital analysis either. The transit photometry                
data that we used for the analysis were: TESS Sector 23, the two transit events recorded with                 
MuSCAT2 on 9 May 2020 and 12 May 2020 (hereafter MuSCAT2​1 ​and MuSCAT2​2​), and the               
three transit events recorded with LCOGT on 15 May 2020, 24 May 2020, and 5 June 2020                 
(hereafter LCOGT​1​, LCOGT​2​, and LCOGT​3​). The TJO data and the remaining MuSCAT2 transit             
data have insufficient precision for precise transit analysis. For increasing the transit signal in the               
MuSCAT2 data, we combined the four light curves into a single one including ​g​, ​r​, ​i​, and ​zs                  
photometry. All RV and transit data time series are taken in the common time frame of                
Barycentric Dynamical Time (TDB). 

In the first step of our modeling we inspected the PDC TESS light curves. Although the                
PDC dataset was already corrected for dominant systematics by default, we further corrected it              
for small systematics, which were still evident in the light curve. In particular, we rejected a                
dozen obvious outliers and normalized the PDC light curve by fitting a Stochastically-driven,             
damped Harmonic Oscillator (SHO) GP kernel (included in the E​XO​-S​TRIKER via ​CELERITE​, 89​) to              
capture the non-periodic variation of the light curve. The final product of our detrending was a                
nearly flat, normalized, TESS light curve, which we adopted to seek for transit signals using               
TLS. As illustrated in Fig. S5A, we detected a significant TLS signal with false positive rate of                 
< 1% (85), with a period of 1.467 d (as in CARMENES VIS and MAROON-X RV data),                 
together with its harmonics at 0.73 d, 2.93 d, 4.40 d, etc. in Fig. S5B shows the TLS power                   
spectrum of the TESS light curve of the joint fit residuals, which have no evidence of additional                 
transit events.  

As a second step, using the TESS ​PDC photometry, we constructed a transit light curve               
model with planetary orbital parameters: period ​P​b​, eccentricity ​e​b​, argument of periastron ​ω​b​,             
inclination ​i​b​, time of inferior transit conjunction ​t​0​, and the planet semi-major axis and radius ​a​b                
and ​R​b ​(in units of stellar radius, R​★​), respectively. The TESS data parameters adopted in our                
model were the flux offset and jitter parameters, TESS​off and TESS​jitt​. The TESS light curve was                
detrended simultaneously by the SHO GP model with three hyper-parameters: power ​S​0​,            
characteristic frequency ​ω​0​, and a quality factor of the SHO kernel. We adopted a quadratic               
limb-darkening model to describe the transit signal shape, adding two more parameters, ​u​1 and              
u​2​. We then included the RV model, which added seven additional parameters applied to the               
RVs. For the CARMENES VIS and MAROON-X red and blue datasets we fitted for the RV                
offsets, RV jitters, and the RV signal semi-amplitude ​K​, which constrains the planetary mass.              
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The rest of orbital parameters are common for the transit and RV model components. In total, the                 
joint model has 21 data and orbital free parameters.  

As an alternative analysis, we built a more complex joint model including the MuSCAT2              
and LCOGT photometry. For modeling the TESS, MuSCAT2, and LCOGT light curves together             
with the RVs from CARMENES VIS and MAROON-X red and blue, we adopted different              
quadratic limb-darkening models and optimized the quadratic limb-darkening parameters for          
each instrument with six parameters: TESS ​u​1 and ​u​2​, MuSCAT2​1,2 ​u​1 and ​u​2​, and LCOGT​1,2,3 ​u​1                 
and ​u​2​. The ground-based transit MuSCAT2 and LCOGT data were simultaneously detrended            
with a linear model against airmass at the time of measurement, thus adding five more               
parameters. We also varied the flux offset and jitter parameter of each transit light curve data                
separately, which translated into six offset and six jitter transit data parameters. In total, this               
alternative model has 40 free parameters.  

For the modelling fitting process, we adopted a dynamical nested sampling with ​DYNESTY​,             
with 100% weight on the posterior convergence (86). For all parameters we adopted priors,              
which are summarized in Table S5. Our nested sampling test represented a forced, high-density,              
multi-dimensional parameter volume search, the posterior estimates of which were adopted as            
our final results. The parameter posterior estimates of the two joint models described above              
(hereafter CMT - for the model including CARMENES VIS, MAROON-X and TESS, and             
CMT+LM, for the model that adds LCOGT​, and MuSCAT2) are summarized in Table S6. Fig. 1                
shows the phase-folded CMT data and model, Fig. S6 shows the TESS​, MuSCAT2​1,2​, and              
LCOGT​1,2,3 ​flux time series and the transit light curve component of the CMT+LM model, and               
Fig. S7 shows the detrended phase-folded data of the CMT+LM model. The posterior             
distributions of the nested sampling parameters of both models are shown in the corner plots of                
Figs. S8 and S9, respectively. Both models are consistent with each other within the estimated               
uncertainties, although the CMT+LM model has larger parameter uncertainties. We attribute this            
to the much larger parameter space (21 versus 40 parameters), which produces additional             
covariance with the orbiting parameters. The noisier MuSCAT2 and LCOGT data with respect to              
TESS do not contribute substantial information to the orbital and physical determination of             
Gliese 486 b. Therefore, in Table 1 and the reminder of our analysis we report only the                 
parameters obtained from the CMT model. 

The orbital eccentricity of Gliese 486 b is not constrained. Our full-Keplerian modelling             
was done with free ​e​b​, ω​b​, or ​e​b​sin(ω​b​), ​e​b​cos(ω​b​) parameterization, and both solutions provided              
only an upper limit on the eccentricity of ​e​b < 0.05 at the 68.3% confidence level. A forced                  
circular model of Gliese 486 b with ​e​b fixed at 0 (but ​t​0 varied to assure transit event at ​t​0 ~                     
2458931.16) led to solutions which are statistically indistinguishable from the full Keplerian            
model. The CMT model has a Bayesian log-evidence of ln ​Z = 76406.2 ± 0.4 for the circular                  
model and ln ​Z = 76405.1 ± 0.4 for the full-Keplerian model. The CMT+LM model is similar: ln                  
Z = 84642.6 ± 0.4 for the circular model and ln ​Z = 84641.7 ± 0.4 for the full-Keplerian model.                    
This low orbital eccentricity is what we expect given the planet's proximity to the star, which                
should cause tidal circularization. We investigated the star-planet tides of the Gliese 486 system              
using the E​Q​T​IDE code (​22​), which calculates the tidal evolution of two bodies based on standard                
models (​89​, ​90, 91​). For Gliese 486 b we adopted the Earth’s value ​k​2​/​Q = 0.025 from (​92​) and                   
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initial planetary rotational period of 0.5 d, whereas for the star Gliese 486 we adopted ​k​2​/​Q = 2 x                   
10​6 and an initial stellar rotational period of 130 d. Fig. S10 shows the eccentricity decay due to                  
star-planet tides from our tidal evolution simulations. We tried a set of different initial              
semi-major axes and eccentricities a few percent larger than the observed, and found that Gliese               
486 b reached synchronous rotation within < 10 000 yr and that, on average, its planetary orbit                 
was fully circularized in only ~ one million years. For our final orbital solution of Gliese 486 b,                  
we therefore adopted the simpler circular orbit model. Our final orbital solution for Gliese 486 b                
is given in Table 1. 

The CARMENES VIS data show small residual scatter of wrms = 1.87 m s​-1 and an RV                 
jitter level of 1.45 m s​-1​. MAROON-X blue channel data show wrms = 1.12 m s​-1 ​and an RV jitter                    
level of 0.70 ms​-1​, while the red channel shows wrms = 0.42 m s​-1 ​and an RV jitter level of only                     
0.25 m s​-1​. The MAROON-X red radial velocities have the lowest scatter ever seen for an M                 
dwarf without applying corrections for activity-induced jitter. 

 
Search for transit timing variations 

To search for possible TTVs , we performed two independent analyses including all detected              
transit data available. The first was done using the ​E​XO​-S​TRIKER by adopting the CMT-LM              
model, but allowing for variable transit mid times. In this model, the orbital period ​P​b ​was fixed                 
at its best-fitting value, while the transit times ​t​0 ​to ​t​52 were allowed to vary (but only fitting the                   
18 individual times-of-transits for which we had data), thus adding 16 more fitting parameters to               
the base model. The second test was done with ​JULIET​, which was applied only to the transit data.                  
In this scheme, all the transit parameters across each individual TESS, MuSCAT2, and LCOGT              
transit were shared, except for the limb-darkening coefficients (which were individual to each             
instrument), the 18 individual times-of-transits, out-of-transit fluxes, and the coefficients of           
linear models in airmass, which were used to detrend each of the ground-based light curves               
simultaneously in the modelling procedure.  

We detected some marginal TTVs in the order of a few minutes in the ​TESS data, and                 
larger variations on the LCOGT transits, but with higher TTV uncertainty. Using the             
E​XO​-S​TRIKER and ​JULIET we qualitatively compared a fit using a linear ephemeris (that is,              
non-TTV model) and a model that allows TTVs. We found a very strong Bayesian evidence in                
favor of a linear ephemeris i.e., no significant TTVs arising from the combined transit              
photometry (Δln ​Z ~ 44 in the case the E​XO​-S​TRIKER​, Δln ​Z ~ 37 in the case of ​JULIET​). We also                     
used the E​XO​-S​TRIKER to dynamically model the extracted TTVs, but we could not explain these               
variations by another non-transiting planet perturbing Gliese 486 b. This is consistent with the              
RV data, which did not show any evidence for another planet. We conclude that there is no                 
reason to prefer TTVs over linear ephemeris and evidence of only a single planet Gliese 486 b. 

 
  Supplementary Text 

Prospects for atmospheric investigation of Gliese 486 b 

Fig. 3A shows the expected transmission signal of the planetary atmospheres of all known rocky               
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planets (with ​R​p between 0.5 and 2.0 R​E​) with measured masses and radii that transit M dwarfs as                  
a function of the host star magnitude in the ​K​s band. In all cases, a mean molecular weight 𝜇 = 18                     
for a water (steam)-dominated atmosphere was assumed. Higher transmission signal values           
around bright stellar host magnitudes provide more favorable conditions for detecting a possible             
atmosphere, while planets with lower transmission signals around faint stars are more technically             
challenging to characterize. Three target sub-groups are apparent. The first is rocky planets             
transiting around very bright host stars, visible with the naked eye from dark sites. These are                
generally G- and K-type main-sequence stars, and the prospects for their atmospheric            
investigation and characterization are higher because of the host star brightness. Members of this              
group are 55 Cnc e (​30​), ​HD 219134 b and c (​93​), and BD-02 5958 b and c (94) (π Men c (​95​),                       
with a density of about 2.8·10​3 kg m​-3​, is not a rocky planet). However, except for the poorly                  
understood variability of 55 Cnc e (​96​), none has a detected atmosphere. The second group are                
planets orbiting M-dwarf hosts have better prospects for atmospheric detection, as the small size              
of the host star compensates for their much dimmer brightness. In this group, the largest               
atmospheric signals are expected for the TRAPPIST-1 planets because of the high radius ratio              
between the planets and the host star. Gliese 486 b is also favorable for rocky planet atmosphere                 
searches. Gliese 486 b is similar to GJ 357 b (​97​) in terms of planet parameters and prospects for                   
atmospheric investigation. These planets have similar suitability: the known super-Earths around           
non-M stars, Gliese 486 b, and the TRAPPIST-1 system. A continuously updated compendium             
of transiting planets with measured mass around M dwarfs is available in (98). 

The combination of its small radius and high equilibrium temperature makes Gliese 486 b              
unlikely to have retained a large atmosphere. With a radius of about 1.3 R​E​, we expect Gliese                 
486 b to have lost its primordial hydrogen-helium atmospheres due to photoevaporation            
processes (​29, 99, 100​). At the current planet location the atmosphere could have been lost               
during the earlier phases of Gliese 486 stellar evolution. However, whether rocky planets around              
M dwarfs are able to retain a substantial fraction of their atmospheres and, if so, at which ranges                  
of mass and ​T​eq​ remains an open question. Gliese 486 b could be used to test these mechanisms.  

At present, LHS 3844 b, a 1.3 R​E planet around an M5 V star, is the most thoroughly                  
investigated small rocky planet in search for an atmosphere. Its thermal phase curve has been               
searched for signs of atmospheric heat redistribution (101). Those authors determined that the             
data were best explained by a bare rock model with a low Bond albedo, supporting theoretical                
predictions that hot terrestrial planets orbiting small stars may not retain substantial atmospheres             
(​99, 102​). However, LHS 3844 b has an orbital period 3.2 times shorter than Gliese 486 b and ​T​eq                   
hotter by 100 K. LHS 3844 b does not have a measured mass limiting interpretation of its                 
atmosphere. The brightness of the host star makes Gliese 486 b a more suitable target for phase                 
curve characterization and epoch of superior transit conjunction (secondary eclipse time)           
determination and, thus, determining the day and night side temperatures of the planet. Our joint               
model with free planet eccentricity constrains the secondary eclipse time to           

d, suitable for scheduling future observations.458931.88643 2 +0.00769
−0.00829   
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Table S1. Radial velocity time-series from the CARMENES VIS channel spectra. ​Only a 
subset of the data analysed in this paper is shown here. A machine-readable version of the full 
dataset, including the spectroscopic activity indices is available in Data S1. 
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Barycentric Julian Date, 
BJD 

Radial velocity, RV (m s​–1​) Radial velocity uncertainty, 
σRV (m s​–1​) 

2457400.74081 4.52 1.07 

2457401.74239 0.07 1.30 

2457418.71847 -2.32 1.14 

2457421.70507 -2.65 0.98 

2457426.69298 0.91 1.10 

2457442.60293 -2.97 0.91 

2457442.62657 -3.46 0.93 

2457476.51979 -2.88 1.35 

2457492.53441 -1.28 1.62 



 
 

 
Table S2.​ ​Radial velocity time-series from the CARMENES NIR channel spectra. ​Only a 
subset of the data analysed in this paper is shown here. A machine-readable version of the full 
dataset, including the spectroscopic activity indices is available in Data S1. 
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Barycentric Julian Date, 
BJD 

Radial velocity, RV (m s​–1​) Radial velocity uncertainty, 
σRV (m s​–1​) 

2457788.52216 -24.63 10.92 

2457802.65175 -4.70 5.12 

2457856.53224 -19.15 4.22 

2457876.53529 -16.20 4.48 

2457896.4259 -15.63 3.89 

2457950.37141 -17.72 9.92 

2458122.69387 -12.63 3.94 

2458141.58966 -14.78 4.94 

2458206.57208 -11.17 5.61 



 
 

 
Table S3. Radial velocity time-series from the MAROON-X red channel spectra. ​Only a 
subset of the data analysed in this paper is shown here. A machine-readable version of the full 
dataset, including the spectroscopic activity indices is available in Data S1. 
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Barycentric Julian Date, 
BJD 

Radial velocity, RV (m s​–1​) Radial velocity uncertainty, 
σRV (m s​–1​) 

2458989.74702 1.74 0.46 

2458989.75182 1.37 0.40 

2458991.82562 -2.38 0.40 

2458991.83039 -1.98 0.34 

2458992.85416 -0.58 0.27 

2458992.85888 -1.02 0.40 

2458993.82807 4.14 0.30 

2458993.83285 4.17 0.46 

2458994.77985 -2.26 0.72 



 
 

      
 
Table S4. Radial velocity time-series from the MAROON-X blue channel spectra. ​Only a 
subset of the data analysed in this paper is shown here. A machine-readable version of the full 
dataset, including the spectroscopic activity indices is available in Data S1. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
15 

 
 

Barycentric Julian Date, 
BJD 

Radial velocity, RV (m s​–1​) Radial velocity uncertainty, 
σRV (m s​–1​) 

2458989.74701 3.30 1.01 

2458989.75179 1.72 0.86 

2458991.82561 -2.75 0.77 

2458991.83037 -3.37 0.84 

2458992.85415 -1.55 0.87 

2458992.85885 -2.59 0.82 

2458993.82806 4.19 1.13 

2458993.83284 2.99 1.01 

2458994.77982 -2.56 1.68 



 
 

 
 
 
Table S5. Adopted parameter priors. ​These prior probabilities were used as input to the              
modeling of photometry (TESS, MuSCAT2, LCOGT) and radial velocities (CARMENES VIS,           
MAROON-X red, MAROON-X blue). The notations of ​N​, ​U​, and ​J represent normal, uniform,              
and Jeffrey’s prior probability distributions. 
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Parameter Adopted priors 

K​b​ (m s​−1​) U​(0.01,5.00) 

P​b ​(d) U​(1.46500,1.47500) 

e​b U​(0.0,0.3), or fixed at 0 

ω​b​ (deg) U​(0.0,360.0), or undefined when ​e​b​= 0  

e​b​sin(​ω​b​) U​(-1.0,1.0) 

e​b​cos(​ω​b​) U​(-1.0,1.0) 

i​b​ (deg) U​(85.00,95.00) 

t​0​ − 2450000 (BJD) U​(8931.04,8931.26) 

a​b​/​R​★ U​(5.00,15.00) 

R​b​/​R​★  U​(0.01,0.05) 

RV offset CARMENES (m s​−1 ​) U​(-5.00,5.00) 

RV jitter CARMENES (m s​−1 ​) J​(0.01,5.00) 

RV offset MAROON-X red (m s​−1 ​) U​(-5.00,5.00) 

RV jitter MAROON-X red (m s​−1 ​) J​(0.01,5.00) 

RV offset MAROON-X blue (m s​−1 ​) U​(-5.00,5.00) 

RV jitter MAROON-X blue (m s​−1 ​) J​(0.01,5.00) 

Transit offset TESS (ppm) N​(0.0,1000.0) 

Transit jitter TESS (ppm) J​(1.0,3000) 
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Transit offset MuSCAT2 1,2 (ppm) N​(0.0,1000.0) 

Transit jitter MuSCAT2 1,2 (ppm) J​(1.0,3000) 

Transit offset LCOGT 1,2,3 (ppm) N​(0.0,1000.0) 

Transit jitter LCOGT  1,2,3 (ppm) J​(1.0,3000) 

TESS GP SHO S​0 J​(0.0001,0.0100) 

TESS GP SHO Q J​(0.0001,0.5000) 

TESS GP SHO ​ω​0 J​(0.0001,2.0000) 

Linear detrend. coef. MuSCAT2​1,2 ​& 
LCOGT​1,2,3 

U​(-0.1,0.1) 

Quad. limb-dark. TESS ​u​1 U​(0.00,1.00) 

Quad. limb-dark. TESS ​u​2 U​(0.00,1.00) 

Quad. limb-dark. MuSCAT2 ​u​1 U​(0.00,1.00) 

Quad. limb-dark. MuSCAT2 ​u​2 U​(0.00,1.00) 

Quad. limb-dark. LCOGT ​u​1 U​(0.00,1.00) 

Quad. limb-dark. LCOGT ​u​2 U​(0.00,1.00) 



 
 

 
 
 
 
 
 
 
 
Table S6. Results of the joint fit model fitting. ​Best fitting values and uncertainties are listed as 
extracted from the posterior probability distributions of the CMT and CMT+ML models (Figures 
S8 & S9, respectively).   
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Parameter  CMT+ML fit CMT fit  

K​p​ [m s​-1​] .358  3 +0.099
−0.164   3.371+0.070

−0.081   

P​p​ [d]   1.467111  +0.000050
−0.000026 

 
   .467119  1 +0.000031

−0.000030  

i​p​ [deg]  8.6  8 +1.0
−1.4  8.4  8 +1.1

−1.4  

t​0​ [d]  458931.15939  2 +0.00056
−0.00067  458931.15935  2 +0.00042

−0.00042   

a​p ​/​R​⋆ 0.94  1 +0.55
−1.22  0.80  1 +0.57

−1.02  

R​p​/​R​⋆  .0366  0 +0.0011
−0.0026   .0365  0 +0.0011

−0.0014    

RV off. CARMENES−VIS [m s​-1​]  0.15  − +0.31
−0.32   0.19  − +0.22

−0.23   

RV off. MAROON−X red [m s​-1​] .105  0 +0.084
−0.089  .111  0 +0.057

−0.055   

RV off. MAROON−X blue [m s​-1​]  .09  0 +0.20
−0.21   .10  0 +0.14

−0.13   

RV jitter CARMENES−VIS [m s​-1​] .42  1 +0.26
−0.37   .47  1 +0.22

−0.20   

RV jitter MAROON−X red [m s​-1​] .258  0 +0.163
−0.080   .245  0 +0.071

−0.066   

RV jitter MAROON−X blue [m s​-1​] .65  0 +0.24
−0.30   .67  0 +0.18

−0.19   

Transit offset ​TESS​ [ppm]   0 +1900
−1800  0  6 +850

−890  

Transit offset MuSCAT​1​ [ppm] 00  − 2 +2000
−2100   ... 

Transit offset MuSCAT​2​ [ppm] 300  1 +1800
−1500  ... 

Transit offset LCOGT​1 ​[ppm] 300  − 2 +940
−1210

 ... 
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Transit offset LCOGT​2​ [ppm] 00  8 +1900
−1700   ... 

Transit offset LCOGT​3 ​ [ppm] 950  − 3 +770
−1120  ... 

Transit jitter ​TESS​ [ppm] .6  4 −2.9
+11.5   .0  4 +6.4

−2.3   

Transit jitter MuSCAT​1​ [ppm] 4  2 −21
+146

 ... 

Transit jitter MuSCAT​2​ [ppm] 0  2 −17
+107

  ... 

Transit jitter LCOGT​1​ [ppm]  790  1 +210
−1250   ... 

Transit jitter LCOGT​2​ [ppm] 4  3 −31
+285

 ... 

Transit jitter LCOGT​3​ [ppm] 30  9 +170
−710  ... 

TESS​ GP-SHO S​0  .00102  0 +0.00319
−0.00078     .00074  0 +0.00320

−0.00055  

TESS​ GP-SHO Q  .0108  0 +0.0197
−0.0077  .0093  0 +0.0131

−0.0063    

TESS​ GP-SHO ω​0  .27  0 +0.46
−0.18   .36  0 +0.56

−0.20   

Linear trend MuSCAT​1  .0014  0 +0.0016
−0.0015  ...  

Linear trend MuSCAT​2  .0038  0 +0.0014
−0.0016   ...  

Linear trend LCOGT​1  .00148  − 0 +0.00070
−0.00058  ...  

Linear trend LCOGT​2  .0006  0 +0.0012
−0.0014   ... 

Linear trend LCOGT​3  .00252  − 0 +0.00086
−0.00071  ... 

u​1 ​TESS  .29  0 +0.25
−0.18   .26  0 +0.21

−0.16   

u​2​ TESS  .39  0 +0.30
−0.24   .42  0 +0.31

−0.26   

u​1​ MuSCAT  .48  0 +0.25
−0.27  ... 

u​2​ MuSCAT  .52  0 +0.29
−0.31   ... 

u​1 ​LCOGT  .51  0 +0.27
−0.28   ... 

u​2​ LCOGT  .48  0 +0.31
−0.29   ... 

M​p​ [M​⊕​]  .80  2 +0.14
−0.19   .82  2 +0.11

−0.12   
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a​p ​[au]  .01734  0 +0.00026
−0.00027  .01734  0 +0.00026

−0.00027  

R​p​ [R​⊕​]  .305  1 +0.068
−0.107   .305  1 +0.063

−0.067  

T​eq​ [K]  01  7 +13
−13   01  7 +13

−13   

S​ [S​⊕​]  0.3  4 +1.5
−1.4   0.2  4 +1.5

−1.4   

g​ [m s​2​ ]  6.1  1 +2.6
−1.8   6.2  1 +1.9

−1.6  

ρ​b​ [10​-3​ kg cm​−3​]  .9  6 +1.7
−1.1   .0  7 +1.2

−1.0  

v​esc​ [km s​−1​]  6.37  1 +0.70
−0.64   6.44  1 +0.55

−0.52   

Impact parameter ​b  .27  0 +0.21
−0.18   .29  0 +0.20

−0.20  

Transit duration [h]  .021  1 +0.046
−0.027  .025  1 +0.031

−0.023  

ρ​⋆​ [10​-3​ kg cm​−3​]  1.5  1 +1.8
−3.4  1.1  1 +1.9

−2.8  



 
 

 

 
 

Fig. S1. ​RV data for Gliese 486. ​Panel ​(A) shows ​27 HIRES RVs (green circles), 12 HARPS                 
RVs (cyan squares), 76 CARMENES VIS RVs (magenta diamonds), 60 CARMENES NIR            
(amber diamonds), and 65 MAROON-X blue (blue squares) and red (red circles) RVs. The data               
error bars indicate the 1σ uncertainties of the measurements. The time baseline of the              
observations is from January 1998 to May 2020. A HIRES outlier at BJD = 2452006.986 (RV ~                 
−38 m s​-1​) falls outside of the plotting range. Calendar years are indicated at the top for                 
reference. Panel ​(B) shows a zoomed baseline between BJD = 2458985 and 2459015 when              
high-cadence RVs were obtained. 
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Fig. S2. ​TESS Sector 23 TPF and a false-color, 3×3 arcmin​2 SDSS9 image of Gliese 486. (A)                 
The TPF electron counts are color-coded by flux, the orange bordered pixels are used in SAP,                
and the scale is 21 arcsec pixel​-1​. ​(B) A green square in the ​g’r’i’ SDSS9 (​52​) composition                 
(epoch of observation: J2003.32) marks the location of the star in early 2020. In both fields of                 
view, Gliese 486 is the brightest star.  
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Fig. S3. GLS power spectrum of the photometric data from SuperWASP and ASAS-SN of              
Gliese 486. (A) SuperWASP North, ​(B) SuperWASP South, ​(C) ASAS-SN ​g’ and (D)             
ASAS-SN ​V band ground-based photometry. The inset panels show the discrete Fourier            
transform window function of the observations. The blue vertical dashed line indicates a peak              
that is close to the most likely stellar rotational period of Gliese 486 obtained from GP (​P​rot ~ 130                   
d), while the red vertical dashed lines indicate the first two one-year aliases of this signal.  
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Fig. S4. Maximum logarithmic likelihood periodograms of the spectroscopic data of Gliese            
486. Left panels are ​(A) CARMENES VIS RVs, ​(B) CARMENES NIR RVs, ​(C) ​MAROON-X              
red RVs, ​(D) MAROON-X blue RVs, ​(E) HIRES RVs, ​(F) HARPS, ​(G) all RVs together, ​(H)                
best-fit residuals of all RVs; middle panels are ​(I) CARMENES-VIS BIS, ​(J) CARMENES-VIS             
CON, ​(K) CARMENES-VIS FWHM, ​(L) CARMENES-VIS Ca IRT, ​(M) CARMENES-VIS          
CRX, ​(N) CARMENES-VIS dLW, ​(O) ​CARMENES-VIS Hα, ​(P) CARMENES-VIS Na D1,           
(Q) CARMENES-VIS Na D2; right panels are ​(R) MAROON-X red CRX, ​(S) MAROON-X red              
dLW, ​(T) MAROON-X red Hα, ​(U) MAROON-X red Ca IRT, ​(V) MAROON-X blue CRX,              
(W) MAROON-X blue dLW, ​(X) MAROON-X blue Hα, ​(Y) MAROON-X Na D1, ​(Z)             
MAROON-X Na D2. Panels ​(A)-(H) show only the period range of 1-40 d (no significant lower                
frequency signals are detected in the RV data). The orbital frequency of Gliese 486 b is ​P​b =                  
1.467 d (blue dashed vertical line) is apparent in the CARMENES VIS and MAROON-X data.               
The second strongest peak at ~3.14 d is the 1 d alias frequency. Horizontal lines indicate the Δln                  
L significance levels that correspond to FAP = 10% (dotted), 1% (dot-dashed), and 0.1%              
(dashed).  
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Fig. S5. TLS power spectra of the detrended TESS Sector 23 PDC light curve of Gliese 486.                 
(A) ​The planetary transit signal at ​P​b ​= 1.467 d is accompanied by harmonics at 0.73, 2.93, and                  
4.40 d. ​(B) TESS residuals of the one-planet transit model. The horizontal dashed line indicates               
the signal detection efficiency (SDE) power level of 7.0, which corresponds to a TLS false               
positive rate of 1 % (85). 
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Fig. S6. ​Transit photometry of Gliese 486. ​The transit component of the joint model is shown                
with a black solid line. (A) PDC data from Sector 23 of ​TESS​. (B) Ground based data of Gliese                   
486 from MuSCAT2​1 and (C) MuSCAT2​2​. (D) Ground based data of Gliese 486 from LCOGT​1​,               
(E) LCOGT​2​, and (F) LCOGT​3​. Error bars indicate 1σ uncertainties of individual measurements. 
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Fig. S7. ​Same as Fig. 1, but for the CMT+LM model and datasets. Phase-folded              
CARMENES VIS ​(A)​, MAROON-X red ​(B)​, and MAROON-X blue RV data ​(C)​. Phase-folded             
sector 23 ​TESS data ​(D)​, MuSCAT2 data obtained on two nights (9 May 2020: amber, 12 May                 
2020: brown) ​(E)​, and LCOGT data obtained on three nights (15 May 2020: cyan, 24 May                
2020: magenta, 5 June 2020: light blue) ​(F). Error bars indicate 1σ uncertainties of individual               
measurements. 
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Fig. S8. Results of the CMT model fitting. Lower left correlation plot shows the global               
parameter posterior probability distributions from the nested sampling analysis. Upper right           
corner shows physical parameters derived from the fitted parameters. The position of the median              
of each posterior probability distribution is marked with red grid lines. The black contours on the                
2D panels represent the 1σ, 2σ, and 3σ confidence levels of the overall posterior samples. The                
panels on each diagonal show the 1D histogram distribution of each parameter, while the dashed               
black lines show the 68.3% percentiles. Numerical results are listed in Table S6.  
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Fig. S9. Same as Fig. S8, but for the CMT+LM model. 
 
 
 
 
 
 
 
 
 
 

29 
 
 



 
 

 
 

 
Fig. S10. Eccentricity evolution of Gliese 486 achieved via planet-star tidal simulations.            
The trajectories are constructed for various sets of initial eccentricities and semi-major axes near              
the best-fit of Gliese 486 b. All eccentricity trajectories converge to a circular orbit within one                
million year. 
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